TG6002 is an oncolytic vaccinia virus expressing FCU1 protein, which converts 5-fluorocytosine into 5-fluorouracil. The study objectives were to assess tolerance, viral replication, 5-fluorouracil synthesis, and tumor microenvironment modifications to treatment in dogs with spontaneous malignant tumors. Thirteen dogs received one to three weekly intratumoral injections of TG6002 and 5-fluorocytosine.
View Article and Find Full Text PDFOncolytic virotherapy is an emerging strategy that uses replication-competent viruses to kill tumor cells. We have reported the oncolytic effects of TG6002, a recombinant oncolytic vaccinia virus, in preclinical human xenograft models and canine tumor explants. To assess the safety, biodistribution and shedding of TG6002 administered by the intravenous route, we conducted a study in immune-competent healthy dogs.
View Article and Find Full Text PDFBackground: Cancer is a leading cause of mortality for both humans and dogs. As spontaneous canine cancers appear to be relevant models of human cancers, developing new therapeutic approaches could benefit both species. Oncolytic virotherapy is a promising therapeutic approach in cancer treatment.
View Article and Find Full Text PDFIn this article we report that the M2 protein encoded by the vaccinia virus is secreted as a homo-oligomer by infected cells and binds two central costimulation molecules, CD80 (B7-1) and CD86 (B7-2). These interactions block the ligation of the two B7 proteins to both soluble CD28 and soluble cytotoxic T-lymphocyte associated protein 4 (CTLA4) but favor the binding of soluble PD-L1 to soluble CD80. M2L gene orthologues are found in several other poxviruses, and the B7-CD28/CTLA4 blocking activity has been identified for several culture supernatants of orthopoxvirus-infected cells and for a recombinant myxoma virus M2 protein homolog (i.
View Article and Find Full Text PDFTG4010, a Modified Vaccinia virus Ankara (MVA) expressing human mucin1 (MUC1) has demonstrated clinical benefit for patients suffering from advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. To support its development, preclinical experiments were performed with either TG4010 or β-galactosidase-encoding MVA vector (MVA-βgal) in mice presenting tumors in the lung. Tumor growth was obtained after intravenous injection of CT26 murine colon cancer cells, engineered to express either MUC1 or βgal.
View Article and Find Full Text PDFBackground: Advanced non-small cell lung cancer patients receiving TG4010, a therapeutic viral vaccine encoding human Mucin 1 and interleukin-2 in addition to standard chemotherapy, displayed longer overall survival in comparison to that of patients treated with standard chemotherapy alone. Our study intended to establish the association between overall survival and vaccine-induced T cell responses against tumor associated antigens (TAA) targeted by the vaccine.
Method: The TIME trial was a placebo-controlled, randomized phase II study aimed at assessing efficacy of TG4010 with chemotherapy in NSCLC.
Athough the clinical efficacy of oncolytic viruses has been demonstrated for local treatment, the ability to induce immune-mediated regression of distant metastases is still poorly documented. We report here that the engineered oncolytic vaccinia virus VV-TKRR-Fcu1 can induce immunogenic cell death and generate a systemic immune response. Effects on tumor growth and survival was largely driven by CD8 T cells, and immune cell infiltrate in the tumor could be reprogrammed toward a higher ratio of effector T cells to regulatory CD4 T cells.
View Article and Find Full Text PDFOncoimmunology
September 2016
We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses.
View Article and Find Full Text PDFEffector T-cell access to tumor tissue is a limiting step for clinical efficacy of antigen-specific T cell-based immunotherapies. Ectopic mouse tumor models, in which a subcutaneously (s.c.
View Article and Find Full Text PDFTo redress the immune imbalances created by pathologies such as cancer, it would be beneficial to create novel cytokine molecules, which combine desired cytokine activities with reduced toxicities. Due to their divergent but complementary activities, it is of interest to combine interleukin-2 (IL-2) and IL-18 into one recombinant molecule for immunotherapy. Evaluation of a fusokine protein that combines murine IL-2/IL-18 shows that it is stable, maintains IL-2 and IL-18 bioactivities, has notably reduced IL-2 associated toxicities, and has a novel lymphocyte-stimulating activity.
View Article and Find Full Text PDFFirst-generation adenovirus vectors, deleted in the E1 and E3 regions of the genome, induce a strong inflammatory response that affects persistence of vector DNA in transduced organs and causes toxicity in the host. Wild-type adenovirus encodes a number of proteins that are nonessential for viral propagation in vitro but that dampen the inflammatory and immune responses mounted by the host during infection. The adenovirus E3 region-encoded 14.
View Article and Find Full Text PDF