Purpose: The regulation of Ca(2+) entry and removal is a fine-tuned process which remains not well understood in mouse retinal ganglion cells (RGCs). The latter are known to be sensitive to dysfunctions of mitochondria, organelles playing a pivotal role in Ca(2+) reuptake.
Methods: We first described the Ca(2+) signals of RGCs in response to varied drugs with Fura-2 imaging, and secondly tested the role of optic atrophy 1 or OPA1, the gene responsible for Autosomal Dominant Optic Atrophy, on mitochondrial ability to capture intracellular Ca(2+) in cells transfected with the OPA1 small interfering ribonucleic acids (siRNAs).
Purpose: Mutations in the mitochondrial dynamin-related GTPase OPA1 cause autosomal dominant optic atrophy (ADOA), but the pathophysiology of this disease is unknown. As a first step in functional studies, this study was conducted to evaluate the expression of Opa1 in whole retina and in isolated retinal ganglion cells (RGCs) and to test the effects of Opa1 downregulation in cultured RGCs.
Methods: Opa1 mRNA isoforms from total retina and from RGCs freshly isolated by immunopanning were determined by RT-PCR.