Since the 'omics revolution', the assessment of toxic chemical mixtures has incorporated approaches where phenotypic endpoints are connected to a mechanistic understanding of toxicity. In this study we determined the effect of binary mixtures of cadmium and phenanthrene on the reproduction of Folsomia candida and investigated the cellular mechanisms underlying this response. Mixture toxicity modeling showed an antagonistic deviation from concentration addition for reproduction effects of the mixtures.
View Article and Find Full Text PDFBackground: To incorporate genomics data into environmental assessments a mechanistic perspective of interactions between chemicals and induced biological processes needs to be developed. Since chemical compounds with structural similarity often induce comparable biological responses in exposed animals, gene expression signatures can serve as a starting point for the assessment of chemicals and their toxicity, but only when relevant and stable gene panels are available. To design such a panel, we isolated differentially expressed gene fragments from the soil arthropod Folsomia candida, a species often used for ecotoxicological testing.
View Article and Find Full Text PDFBackground: Genomic studies measuring transcriptional responses to changing environments and stress currently make their way into the field of evolutionary ecology and ecotoxicology. To investigate a small to medium number of genes or to confirm large scale microarray studies, Quantitative Reverse Transcriptase PCR (QRT-PCR) can achieve high accuracy of quantification when key standards, such as normalization, are carefully set. In this study, we validated potential reference genes for their use as endogenous controls under different chemical and physical stresses in two species of soil-living Collembola, Folsomia candida and Orchesella cincta.
View Article and Find Full Text PDFIncreasing concern about pollution of our environment calls for advanced and rapid methods to estimate ecological toxicity. The use of gene expression microarrays in environmental studies can potentially meet this challenge. We present a novel method to examine soil toxicity.
View Article and Find Full Text PDFBackground: Environmental quality assessment is traditionally based on responses of reproduction and survival of indicator organisms. For soil assessment the springtail Folsomia candida (Collembola) is an accepted standard test organism. We argue that environmental quality assessment using gene expression profiles of indicator organisms exposed to test substrates is more sensitive, more toxicant specific and significantly faster than current risk assessment methods.
View Article and Find Full Text PDF