Traditional cheesemaking processes often involve backslopping practice. However, over successive inoculations, acidification deficiencies may arise. In such cases, adding a starter is recommended to restore the ecosystem stability.
View Article and Find Full Text PDFThrough their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp.
View Article and Find Full Text PDFIrritable bowel syndrome (IBS) is a functional gastrointestinal disorder characterized by its main symptom, visceral hypersensitivity (VH), which is aggravated by stress. Gut-brain interactions and gut bacteria may alleviate IBS symptoms, including VH. γ-amino butyric acid (GABA), produced notably by lactic acid bacteria (LAB), shows promising result in IBS symptoms treatment.
View Article and Find Full Text PDFBackground: γ-aminobutyric acid (GABA) is a bioactive compound produced by lactic acid bacteria (LAB). The diversity of GABA production in the Lactococcus genus is poorly understood. Genotypic and phenotypic approaches were therefore combined in this study to shed light on this diversity.
View Article and Find Full Text PDFmRNA sits at the crossroads of transcription, translation and mRNA degradation. Many questions remain about the coupling of these three processes in Escherichia coli and, in particular, how translation may have an effect on mRNA degradation and transcription. To characterize the interplay between mRNA degradation and translation while accounting for transcription, we altered the translation initiation or elongation and measured the effects on mRNA stability and concentration.
View Article and Find Full Text PDFA set of 41 synthetic 5'UTRs with different theoretical translation initiation rates were generated to explore the role of 5'UTRs in the regulation of protein levels in . The roles of the synthetic 5'UTRs in regulating the expression of different reporter genes were analyzed . Protein levels varied substantially between the different constructs but for most of the 5'UTRs, protein levels were not correlated with theoretical translation initiation rates.
View Article and Find Full Text PDFRNA processing and degradation shape the transcriptome by generating stable molecules that are necessary for translation (rRNA and tRNA) and by facilitating the turnover of mRNA, which is necessary for the posttranscriptional control of gene expression. In bacteria and the plant chloroplast, RNA degradosomes are multienzyme complexes that process and degrade RNA. In many bacterial species, the endoribonuclease RNase E is the central component of the RNA degradosome.
View Article and Find Full Text PDFTwenty-four strains of Lactococcus lactis isolated from raw goat milk collected in the Rocamadour PDO area were analysed by MLST typing and phenotypic characterisation. The strains were combined to design an indigenous starter for the production of Rocamadour PDO cheese. The strains were divided into three classes based on their technological properties: acidifying and proteolytic strains in class I (12/24 strains), slightly acidifying and non-proteolytic strains in class II (2/24 strains), and non-acidifying and non-proteolytic strains in class III (10/24 strains).
View Article and Find Full Text PDFGut disorders associated to irritable bowel syndrome (IBS) are combined with anxiety and depression. Evidence suggests that microbially produced neuroactive molecules, like γ-aminobutyric acid (GABA), can modulate the gut-brain axis. Two natural strains of and one mutant were characterized for their GABA production and tested in rat by oral gavage for their antinociceptive properties.
View Article and Find Full Text PDFTranslational regulation was investigated at the genome-scale in Escherichia coli cells. Using the polysome profiling method, the ribosome occupancy (RO) and ribosome density (RD) of different mRNA copies were determined for several hundred mRNAs during the exponential- and stationary-phases, providing the most complete characterization of such regulation in E. coli.
View Article and Find Full Text PDFMetabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E.
View Article and Find Full Text PDFThe glucose-xylose metabolic transition is of growing interest as a model to explore cellular adaption since these molecules are the main substrates resulting from the deconstruction of lignocellulosic biomass. Here, we investigated the role of the XylR transcription factor in the length of the lag phases when the bacterium needs to adapt from glucose- to xylose-based growth. First, a variety of lag times were observed when different strains of were switched from glucose to xylose.
View Article and Find Full Text PDFGABA (γ-aminobutyric acid) production has been widely described as an adaptive response to abiotic stress, allowing bacteria to survive in harsh environments. This work aimed to clarify and understand the relationship between GABA production and bacterial growth conditions, with particular reference to osmolarity. For this purpose, NCDO 2118, a GABA-producing strain, was grown in glucose-supplemented chemically defined medium containing 34 mM L-glutamic acid, and different concentrations of salts (chloride, sulfate or phosphate ions) or polyols (sorbitol, glycerol).
View Article and Find Full Text PDFLactic acid bacteria (LAB) potential in the food industry and in the biotechnological sector is a well-established interest. LAB potential in counteracting especially food-borne infections has received growing attention, but despite being a road full of promises is yet poorly explored. Furthermore, the ability of LAB to produce antimicrobial compounds, both by ribosomal synthesis and by decrypting them from proteins, is of high value when considering the growing impact of multidrug resistant strains.
View Article and Find Full Text PDFDesigning bacterial co-cultures adapted to ferment mixes of vegetal and animal resources for food diversification and sustainability is becoming a challenge. Among bacteria used in food fermentation, lactic acid bacteria (LAB) are good candidates, as they are used as starter or adjunct in numerous fermented foods, where they allow preservation, enhanced digestibility, and improved flavor. We developed here a strategy to design LAB co-cultures able to ferment a new food made of bovine milk and lupin flour, consisting in: (i) preselection of LAB species for targeted carbohydrate degradation; (ii) screening of 97 strains of the selected species for their ability to ferment carbohydrates and hydrolyze proteins from milk and lupin and clustering strains that displayed similar phenotypes; and (iii) assembling strains randomly sampled from clusters that showed complementary phenotypes.
View Article and Find Full Text PDFgroup (composed of the and subspecies, recently reassigned as two distinct species) plays a major role in dairy fermentations. Usually present in starter cultures, the two species enable efficient acidification and improve the organoleptic qualities of the final product. Biovar diacetylactis strains produce diacetyl and acetoin, aromas from the citrate metabolization.
View Article and Find Full Text PDFIn living organisms, the same enzyme catalyses the degradation of thousands of different mRNAs, but the possible influence of competing substrates has been largely ignored so far. We develop a simple mechanistic model of the coupled degradation of all cell mRNAs using the total quasi-steady-state approximation of the Michaelis-Menten framework. Numerical simulations of the model using carefully chosen parameters and analyses of rate sensitivity coefficients show how substrate competition alters mRNA decay.
View Article and Find Full Text PDFBacteria have to continuously adjust to nutrient fluctuations from favorable to less-favorable conditions and in response to carbon starvation. The glucose-acetate transition followed by carbon starvation is representative of such carbon fluctuations observed in in many environments. Regulation of gene expression through fine-tuning of mRNA pools constitutes one of the regulation levels required for such a metabolic adaptation.
View Article and Find Full Text PDFMol Microbiol
June 2019
The reason for RNase E attachment to the inner membrane is largely unknown. To understand the cell biology of RNA degradation, we have characterized a strain expressing RNase E lacking the membrane attachment site (cytoplasmic RNase E). Genome-wide data show a global slowdown in mRNA degradation.
View Article and Find Full Text PDFPolysome profiling is a widely used method to monitor the translation status of mRNAs. Although it is theoretically a simple technique, it is labor intensive. Repetitive polysome fractionation rapidly generates a large number of samples to be handled in the downstream processes of protein elimination, RNA extraction and quantification.
View Article and Find Full Text PDFIn this study, we compared different computational methods used for genome-wide determination of mRNA half-lives in Escherichia coli with a special focus on the impact on considering a delay before the onset of mRNA decay after transcription arrest. A wide variety of datasets were analyzed coming from different technical methods for mRNA quantification (microarrays, RNA-seq, and RT-qPCR) and different bacterial growth conditions. The exponential decay of mRNA levels was fitted using both linear and exponential models and with or without a delay.
View Article and Find Full Text PDFBackground: Exoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest.
View Article and Find Full Text PDFMucus is a major component of the intestinal barrier involved both in the protection of the host and the fitness of commensals of the gut. is consumed world-wide in fermented dairy products and is also recognized as a probiotic, as its consumption is associated with improved lactose digestion. We determined the overall effect of on the mucus by evaluating its ability to adhere, degrade, modify, or induce the production of mucus and/or mucins.
View Article and Find Full Text PDFIn the bacterium , the posttranscriptional regulatory system Csr was postulated to influence the transition from glycolysis to gluconeogenesis. Here, we explored the role of the Csr system in the glucose-acetate transition as a model of the glycolysis-to-gluconeogenesis switch. Mutations in the Csr system influence the reorganization of gene expression after glucose exhaustion and disturb the timing of acetate reconsumption after glucose exhaustion.
View Article and Find Full Text PDF