Publications by authors named "Murawski K"

The influence of the etching method on the occurrence of defect levels in InAs/InAsSb type-II superlattice (T2SLs) and MCT photodiode is presented. For both analyzed detectors, the etching process was performed by two methods: wet chemical etching and dry etching using an ion beam (RIE-reactive ion etching). The deep-level transient spectroscopy (DLTS) method was used to determine the defect levels occurring in the analyzed structures.

View Article and Find Full Text PDF

The long-wave infrared (LWIR) interband cascade detector with type-II superlattices (T2SLs) and a gallium-free ("Ga-free") InAs/InAsSb (x = 0.39) absorber was characterized by photoluminescence (PL) and spectral response (SR) methods. Heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate (001) orientation.

View Article and Find Full Text PDF

Deep defects in the long-wave infrared (LWIR) HgCdTe heterostructure photodiode were measured via deep-level transient spectroscopy (DLTS) and photoluminescence (PL). The n-P-π-N photodiode structure was grown by following the metal-organic chemical vapor deposition (MOCVD) technique on a GaAs substrate. DLTS has revealed two defects: one electron trap with an activation energy value of 252 meV below the conduction band edge, located in the low n-type-doped transient layer at the π-N interface, and a second hole trap with an activation energy value of 89 meV above the valence band edge, located in the π absorber.

View Article and Find Full Text PDF

The cutoff effect is a significant determinant of solar magnetohydrodynamic wave propagation and hence pivotal in energy transfer studies, such as solar plasma heating and seismological diagnostics. Despite continuous efforts, no good agreement between observed waveperiods and theory or numerical simulations was found. Our objective is to investigate the magnetoacoustic cutoff effect in the partially ionized solar atmosphere, factoring in the two-fluid effects.

View Article and Find Full Text PDF

We present the formation of quasi-periodic cool spicule-like jets in the solar atmosphere using 2.5-D numerical simulation in two-fluid regime (ions+neutrals) under the presence of thermal conduction and ion-neutral collision. The nonlinear, impulsive Alfvénic perturbations at the top of the photosphere trigger field aligned magnetoacoustic perturbations due to ponderomotive force.

View Article and Find Full Text PDF

The solar corona is two to three orders of magnitude hotter than the underlying photosphere, and the energy loss of coronal plasma is extremely strong, requiring a heating flux of over 1,000 W m to maintain its high temperature. Using the 1.6 m Goode Solar Telescope, we report a detection of ubiquitous and persistent transverse waves in umbral fibrils in the chromosphere of a strongly magnetized sunspot.

View Article and Find Full Text PDF

There have been conflicting findings on the degree to which rapidly deployed visual attention is selective for depth, and this issue has important implications for attention models. Previous findings have attempted to find depth-based cueing effects on such attention using reaction time (RT) measures for stimuli presented in stereo goggles with a display screen. Results stemming from such approaches have been mixed, depending on whether target/distractor discrimination was required.

View Article and Find Full Text PDF

This paper presents a camera-based prototype sensor for detecting fatigue and drowsiness in drivers, which are common causes of road accidents. The evaluation of the detector operation involved eight professional truck drivers, who drove the truck simulator twice-i.e.

View Article and Find Full Text PDF

The purpose of this 12-month randomized, controlled clinical trial was to evaluate the efficacy of a monotherapy protocol with the neodymium-doped yttrium aluminum garnet (Nd:YAG) laser for treatment of peri-implantitis. Twenty patients with 36 implants exhibiting probing pocket depths (PPDs) > 4 mm and evidence of radiographic bone loss (RBL) were randomly divided into two groups. The test group was treated with the Nd:YAG laser, and the control group was managed with mechanical debridement only.

View Article and Find Full Text PDF

In this article, a new data treatment based on time-resolved photoluminescence is presented. It works as a streak camera for infrared. A time-resolved photoluminescence spectrum for the HgCdTe sample at 120 K was performed and analyzed.

View Article and Find Full Text PDF

The InAs/InAsSb type-II superlattices (T2SLs) grown on a GaSb buffer layer and GaAs substrates were theoretically investigated. Due to the stability at high operating temperatures, T2SLs could be used for detectors operating in the longwave infrared (LWIR) range for different sensors to include, e.g.

View Article and Find Full Text PDF

The existence of the Sun's hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.

View Article and Find Full Text PDF

Topography and its effects on cell adhesion, morphology, growth and differentiation are well documented. Thus, current advances with the use of nanotopographies offer promising results in the field of regenerative medicine. Studies have also shown nanotopographies to have strong effects on stem cell self-renewal and differentiation.

View Article and Find Full Text PDF

It is emerging that mesenchymal stem cell (MSC) metabolic activity may be a key regulator of multipotency. The metabolome represents a "snapshot" of the stem cell phenotype, and therefore metabolic profiling could, through a systems biology approach, offer and highlight critical biochemical pathways for investigation. To date, however, it has remained difficult to undertake unbiased experiments to study MSC multipotency in the absence of strategies to retain multipotency without recourse to soluble factors that can add artifact to experiments.

View Article and Find Full Text PDF

There is currently an unmet need for the supply of autologous, patient-specific stem cells for regenerative therapies in the clinic. Mesenchymal stem cell differentiation can be driven by the material/cell interface suggesting a unique strategy to manipulate stem cells in the absence of complex soluble chemistries or cellular reprogramming. However, so far the derivation and identification of surfaces that allow retention of multipotency of this key regenerative cell type have remained elusive.

View Article and Find Full Text PDF

Stem cell differentiation is controlled intrinsically by dynamic networks of interacting lineage-specifying and multipotency genes. However, the relationship between internal genetic dynamics and extrinsic regulation of internal dynamics is complex and, in the case of skeletal progenitor cell differentiation, incompletely understood. In this study we elucidate a set of candidate markers of multipotency in human skeletal progenitor cells by systematic study of the relationships between gene expression and environmental stimulus.

View Article and Find Full Text PDF