This study presents a pioneering investigation of hybrid bismuth-tin (BiSn) liquid metal particles for photothermal applications. It is shown that the intrinsic core-shell structure of liquid metal particles can be instrumentalized to combine the broadband absorption characteristics of defect-rich nano-oxides and the high light-to-heat conversion efficiency of metallic particles. Even though bismuth or tin does not show any photothermal characteristics alone, optimization of the core-shell structure of BiSn particles leads to the discovery of novel, highly efficient photothermal materials.
View Article and Find Full Text PDFIontronic pressure sensors hold significant potential to emerge as vital components in the field of flexible and wearable electronics, addressing a variety of applications spanning wearable technology, health monitoring systems, and human-machine interactions. This study introduces a novel iontronic pressure sensor structure based on a seamlessly deposited TiCT MXene layer onto highly porous melamine foam as parallel plate electrodes and an ionically conductive electrolyte of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/thermoplastic polyurethane coupled with carbon cloth as current collecting layers for improved sensitivity and high mechanical stability of more than 7000 cycles. MXene-deposited melamine foam-based iontronic pressure sensors (MIPS) showed a high sensitivity of 5.
View Article and Find Full Text PDF