Publications by authors named "Murataliev M"

The antibiotic fusidic acid potently inhibits bacterial translation (and cellular growth) by lodging between domains I and III of elongation factor G (EF-G) and preventing release of EF-G from the ribosome. We examined the functions of key amino acid residues near the active site of EF-G that interact with fusidic acid and regulate hydrolysis of GTP. Alanine mutants of these residues spontaneously hydrolyzed GTP in solution, bypassing the normal activating role of the ribosome.

View Article and Find Full Text PDF

CYP102A1 is a highly active, water-soluble, bacterial monooxygenase enzyme that contains both substrate-binding heme and diflavin reductase subunits, both in a single polypeptide. Recently we developed a procedure which uses the known structure of the substrate-bound heme domain of CYP102A1 and its sequence homology with a cytochrome P450 of unknown structure, both of which react with a common substrate but produce different products, to create recombinant enzymes which have substrate selectivity different from that of CYP102A1, and produce the product of the enzyme of unknown structure. Insect CYP4C7, a terpene hydroxylase from the cockroach, was chosen as the cytochrome P450 of unknown structure, and farnesol was chosen as the substrate.

View Article and Find Full Text PDF

The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation.

View Article and Find Full Text PDF

Protein L7/L12 of the bacterial ribosome plays an important role in activating the GTP hydrolytic activity of elongation factor G (EF-G), which promotes ribosomal translocation during protein synthesis. Previously, we cross-linked L7/L12 from two residues (209 and 231) flanking alpha-helix AG' in the G' subdomain of Escherichia coli EF-G. Here we report kinetic studies on the functional effects of mutating three neighboring glutamic acid residues (224, 228, and 231) to lysine, either singly or in combination.

View Article and Find Full Text PDF

Interactions between a soluble form of microsomal cytochrome b(5) (b(5)) from Musca domestica (housefly) and Bacillus megaterium flavocytochrome P450 BM3 and its component reductase (CPR), heme (P450) and FAD/NADPH-binding (FAD) domains were analyzed by a combination of steady-state and stopped-flow kinetics methods, and optical spectroscopy techniques. The high affinity binding of b(5) to P450 BM3 induced a low-spin to high-spin transition in the P450 heme iron (K(d) for b(5) binding = 0.44 microM and 0.

View Article and Find Full Text PDF

The structure and stereochemistry of nine steroid metabolites isolated in quantities ranging from 0.15 to 1.8 mg were determined using a variety of NMR techniques, including heteronuclear multiple bond correlation (HMBC) using broadband adiabatic 13C pulses and phase-sensitive data presentation.

View Article and Find Full Text PDF

Diflavin reductases are enzymes which emerged as a gene fusion of ferredoxin (flavodoxin) reductase and flavodoxin. The enzymes of this family tightly bind two flavin cofactors, FAD and FMN, and catalyze transfer of the reducing equivalents from the two-electron donor NADPH to a variety of one-electron acceptors. Cytochrome P450 reductase (P450R), a flavoprotein subunit of sulfite reductase (SiR), and flavoprotein domains of naturally occurring flavocytochrome fusion enzymes like nitric oxide synthases (NOS) and the fatty acid hydroxylase from Bacillus megaterium are some of the enzymes of this family.

View Article and Find Full Text PDF

A protein fragment of P450BM3 (residues 73-84) which participates in palmitoleate binding was subjected to scanning chimeragenesis. Amino acids 73-84, 73-78, 75-80, and 78-82 were replaced with the homologous fragments of the insect terpenoid hydroxylase CYP4C7. The four chimeric proteins, C(73-84), C(73-78), C(75-80), and C(78-82), were expressed, purified, and characterized.

View Article and Find Full Text PDF

NADP(H) binding is essential for fast electron transfer through the flavoprotein domain of the fusion protein P450BM3. Here we characterize the interaction of NADP(H) with the oxidized and partially reduced enzyme and the effect of this interaction on the redox properties of flavin cofactors and electron transfer. Measurements by three different approaches demonstrated a relatively low affinity of oxidized P450BM3 for NADP(+), with a K(d) of about 10 microM.

View Article and Find Full Text PDF

Previous studies have shown that the interaction of P450 reductase with bound NADP(H) is essential to ensure fast electron transfer through the two flavin cofactors. In this study we investigated in detail the interaction of the house fly flavoprotein with NADP(H) and a number of nucleotide analogues. 1,4,5,6-Tetrahydro-NADP, an analogue of NADPH, was used to characterize the interaction of P450 reductase with the reduced nucleotide.

View Article and Find Full Text PDF

The interaction of recombinant house fly (Musca domestica) P450 reductase with NADPH and the role of the FMN semiquinone in reducing cytochrome c have been investigated. House fly P450 reductase can rapidly oxidize only one molecule of NADPH, whereas the rate of oxidation of a second molecule of NADPH is too slow to account for the observed rates of catalysis. This demonstrates that house fly P450 reductase does not require a priming reaction with NADPH for catalysis.

View Article and Find Full Text PDF

Recombinant house fly (Musca domestica) cytochrome P450 reductase has been purified by anion exchange and affinity chromatography. Steady-state kinetics of cytochrome c reductase activity revealed a random Bi-Bi mechanism with formation of a ternary P450 reductase-NADPH-electron acceptor complex as catalytic intermediate. NADP(H) binding is essential for fast hydride ion transfer to FAD, as well as for electron transfer from FMN to cytochrome c.

View Article and Find Full Text PDF

A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca.

View Article and Find Full Text PDF

Experiments are reported on the uni-site catalysis and the transition from uni-site to multi-site catalysis with bovine heart mitochondrial F1-ATPase. The very slow uni-site ATP hydrolysis is shown to occur without tightly bound nucleotides present and with or without Pi in the buffer. Measurements of the transition to higher rates and the amount of bound ATP committed to hydrolysis as the ATP concentration is increased at different fixed enzyme concentrations give evidence that the filling of a second site can initiate near maximal turnover rates.

View Article and Find Full Text PDF

Cytochrome P450BM3 is a self-sufficient soluble fatty acid hydroxylase from Bacillus megaterium utilizing tightly bound FAD and FMN cofactors to transfer reducing equivalents from NADPH to the heme active site. Active-inactive transitions of cytochrome P450BM3 were exploited to identify catalytic intermediates of the enzyme. Shortly upon reduction by NADPH, a two-electron reduced active P450BM3 is formed with two flavin semiquinones, anionic and neutral, present simultaneously.

View Article and Find Full Text PDF

P450BM3 is a bacterial fusion protein between a cytochrome P450 fatty acid hydroxylase (CYP102) and an FAD- and FMN-containing flavoprotein homologous to NADPH: cytochrome P450 reductase. It has been shown that incubation of P450BM3 with NADPH in the absence of a fatty acid substrate results in inhibition of hydroxylase activity [Narhi, L. O.

View Article and Find Full Text PDF

A microsomal cytochrome b5 cDNA from the house fly, Musca domestica, was cloned and sequenced. The deduced amino acid sequence of the full-length house fly cytochrome b5 (134 residues) is 48% identical to that of rat microsomal cytochrome b5. The house fly cytochrome b5 protein was overexpressed in Escherichia coli, purified, and characterized.

View Article and Find Full Text PDF

It was shown recently that ATP present at near saturating concentrations did not prevent binding and hydrolysis of submicromolar concentration of trinitrophenyl adenosine triphosphate (Tnp-ATP) by F1-ATPase [Murataliev, M. B. & Boyer, P.

View Article and Find Full Text PDF

Relatively high ATP concentrations show an unexpected lack of inhibition of the hydrolysis of low concentrations of trinitrophenyl ATP (TNP-ATP) by mitochondrial F1-ATPase. In striking contrast low TNP-ATP concentrations markedly inhibit the hydrolysis of much higher ATP concentrations. The three catalytic sites undergoing sequential conformational changes have different conformations at any instant of catalysis, and only two need to be filled for rapid, steady-state ATP hydrolysis.

View Article and Find Full Text PDF

The evidence is presented that the ADP- and Mg(2+)-dependent inactivation of MF1-ATPase during MgATP hydrolysis requires binding of ATP at two binding sites: one is catalytic and the second is noncatalytic. Binding of the noncatalytic ATP increases the rate of the inactive complex formation in the course of ATP hydrolysis. The rate of the enzyme inactivation during ATP hydrolysis depends on the medium Mg2+ concentration.

View Article and Find Full Text PDF

The presence of ATP at non-catalytic sites of the chloroplast F1-ATPase (CF1) eliminates a considerable lag in onset of enzyme activity that otherwise occurs in the presence of bicarbonate [Milgrom, Y. M., Ehler, L.

View Article and Find Full Text PDF

The interactions between ADP, Mg2+, and azide that result in the inhibition of the chloroplast F1 ATPase (CF1) have been explored further. The binding of the inhibitory Mg2+ with low Kd is shown to occur only when tightly bound ADP is present at a catalytic site. Either the tightly bound ADP forms part of the Mg(2+)-binding site or it induces conformational changes creating the high-affinity site for inhibitory Mg2+.

View Article and Find Full Text PDF

Interaction of F1-ATPase from beef heart mitochondria with PPi has been investigated. The presence of PPi in the ATPase assay medium does not affect the initial rate of ATP hydrolysis by F1-ATPase, but slows down the decrease of enzyme activity in the course of ATP hydrolysis and increases the steady-state rate of ATP hydrolysis. Being present in the ATPase assay medium, PPi accelerates the ATP-dependent reactivation of an inactive complex formed by F1-ATPase and ADP.

View Article and Find Full Text PDF

Under conditions of molar excess of enzyme, isolated F1-ATPase from beef heart mitochondria catalyses ATP hydrolysis biphasically. The rate constants for product release are approximately 10(-1) and 10(-4)-10(-3) s-1, respectively. The slow phase of ATP hydrolysis is insensitive to EDTA.

View Article and Find Full Text PDF