Publications by authors named "Murat Taner Vurat"

Decellularized extracellular matrix is often used to create an in vivo-like environment that supports cell growth and proliferation, as it reflects the micro/macrostructure and molecular composition of tissues. On the other hand, bioactive glasses (BG) are surface-reactive glass-ceramics that can convert to hydroxyapatite in vivo and promote new bone formation. This study is designed to evaluate the key properties of a novel angiogenic and osteogenic biocomposite graft made of bovine decellularized bone matrix (DBM) hydrogel and 45S5 BG microparticles (10 and 20 wt%) to combine the existing superior properties of both biomaterial classes.

View Article and Find Full Text PDF

Although decellularized bone matrix (DBM) has often been used in scaffold form for osteogenic applications, its use as a stem cell encapsulation matrix adaptable to surgical shaping procedures has been neglected. This study aimed to investigate the feasibility of utilizing solubilized DBM and nanohydroxyapatite (nHAp)-incorporated DBM hydrogels as encapsulation matrix for bone marrow-derived MSCs (BM-MSCs). First, DBM and DBM/nHAp hydrogels were assessed by physical, chemical, turbidimetric, thermal, and mechanical methods; then, in vitro cytocompatibility and in vitro hemocompatibility were investigated.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is involved in many critical cellular interactions through its biological macromolecules. In this study, a macroporous 3D scaffold originating from decellularized bovine liver ECM (dL-ECM), with defined compositional, physical, chemical, rheological, thermal, mechanical, and in vitro biological properties was developed. First, protocols were determined that effectively remove cells and DNA while ECM retains biological macromolecules collagen, elastin, sGAGs in tissue.

View Article and Find Full Text PDF

Bioactive ECM-based materials mimic the complex composition and structure of natural tissues. Decellularized cancellous bone matrix (DBM) has potential for guiding new bone formation and accelerating the regeneration process. On the other hand, low frequency-pulsed electromagnetic field (LF-PEMF) has been shown to enhance the regeneration capacity of bone defects.

View Article and Find Full Text PDF

While periodontal (PD) disease is among principal causes of tooth loss worldwide, regulation of concomitant soft and mineralized PD tissues, and PD pathogenesis have not been completely clarified yet. Besides, relevant pre-clinical models and platforms have limitations in simulating human physiology. Here, we have harnessed three-dimensional bioprinting (3DBP) technology for developing a multi-cellular microtissue model resembling PD ligament-alveolar bone (PDL-AB) biointerface for the first time.

View Article and Find Full Text PDF

The ordered assembly of multicellular structures mimicking native tissues has lately come into prominence for various applications of biomedicine. In this respect, three-dimensional bioprinting (3DP) of cells and other biologics through additive manufacturing techniques has brought the possibility to develop functional in vitro tissue models and perhaps creating de novo transplantable tissues or organs in time. Bioinks, which can be defined as the printable analogues of the extracellular matrix, represent the foremost component of 3DP.

View Article and Find Full Text PDF