Publications by authors named "Murat Olutas"

We proposed and showed strongly orientation-controlled Förster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid-air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm. These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors.

View Article and Find Full Text PDF

Modal gain coefficient is a key figure of merit for a laser material. Previously, net modal gain coefficients larger than a few thousand cm were achieved in II-VI and III-V semiconductor gain media, but this required operation at cryogenic temperatures. In this work, using pump-fluence-dependent variable-stripe-length measurements, we show that colloidal CdSe nanoplatelets enable giant modal gain coefficients at room temperature up to 6600 cm under pulsed optical excitation.

View Article and Find Full Text PDF

A hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.

View Article and Find Full Text PDF

Here, we report efficient composition-tunable Cu-doped ZnInS/ZnS (core and core/shell) colloidal nanocrystals (CNCs) synthesized by using a colloidal non-injection method. The initial precursors for the synthesis were used in oleate form rather than in powder form, resulting in a nearly defect-free photoluminescence (PL) emission. The change in Zn/In ratio tunes the percentage incorporation of Cu in CNCs.

View Article and Find Full Text PDF

Colloidal nanocrystals having controlled size, tailored shape, and tuned composition have been explored for optical gain and lasing. Among these, nanocrystals having Type-II electronic structure have been introduced toward low-threshold gain. However, to date, their performance has remained severely limited due to diminishing oscillator strength and modest absorption cross-section.

View Article and Find Full Text PDF

Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum.

View Article and Find Full Text PDF

We systematically studied temperature-dependent emission kinetics in solid films of solution-processed CdSe nanoplatelets (NPLs) that are either intentionally stacked or nonstacked. We observed that the steady-state photoluminescence (PL) intensity of nonstacked NPLs considerably increases with decreasing temperature, whereas there is only a slight increase in stacked NPLs. Furthermore, PL decay time of the stacked NPL ensemble is comparatively much shorter than that of the nonstacked NPLs, and this result is consistent at all temperatures.

View Article and Find Full Text PDF

Here, we systematically investigated the spontaneous and stimulated emission performances of solution-processed atomically flat quasi-2D nanoplatelets (NPLs) as a function of their lateral size using colloidal CdSe core NPLs. We found that the photoluminescence quantum efficiency of these NPLs decreases with increasing lateral size while their photoluminescence decay rate accelerates. This strongly suggests that nonradiative channels prevail in the NPL ensembles having extended lateral size, which is well-explained by the increasing number of the defected NPL subpopulation.

View Article and Find Full Text PDF

Nonradiative energy transfer (NRET) has been extensively studied in colloidal nanocrystal (quantum dots) and nanorod (quantum wires) assemblies. In this work, we present the first account of spectroscopic evidence of NRET in solid thin films of CdSe based colloidal nanoplatelets (NPLs), also known as colloidal quantum wells. The NRET was investigated as a function of the concentration of two NPL populations with different vertical thicknesses via steady state and time resolved spectroscopy.

View Article and Find Full Text PDF

Colloidal semiconductor quantum wells, also commonly known as nanoplatelets (NPLs), have arisen among the most promising materials for light generation and harvesting applications. Recently, NPLs have been found to assemble in stacks. However, their emerging characteristics essential to these applications have not been previously controlled or understood.

View Article and Find Full Text PDF

Colloidal nanoplatelets (NPLs) have recently emerged as favorable light-emitting materials, which also show great potential as optical gain media due to their remarkable optical properties. In this work, we systematically investigate the optical gain performance of CdSe core and CdSe/CdS core/crown NPLs having different CdS crown size with one- and two-photon absorption pumping. The core/crown NPLs exhibit enhanced gain performance as compared to the core-only NPLs due to increased absorption cross section and the efficient interexciton funneling, which is from the CdS crown to the CdSe core.

View Article and Find Full Text PDF