Publications by authors named "Murat Koseoglu"

Background: Endothelial cells (ECs) use glycolysis to produce energy. In preclinical models of peripheral arterial disease, further activation of EC glycolysis was ineffective or deleterious in promoting hypoxia-dependent angiogenesis, whereas pentose phosphate pathway activation was effective. Hexosamine biosynthesis pathway, pentose phosphate pathway, and glycolysis are closely linked.

View Article and Find Full Text PDF

The vascular endothelial injury occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, but the mechanisms are poorly understood. We sought to determine the frequency and type of cytokine elevations and their relationship to endothelial injury induced by plasma from patients with SARS-CoV-2 versus controls. Plasma from eight consecutively enrolled patients hospitalized with acute SARS-CoV-2 infection was compared to controls.

View Article and Find Full Text PDF

While the vast majority of cellular DNA in eukaryotes is contained in long linear strands in chromosomes, we have long recognized some exceptions like mitochondrial DNA, plasmids in yeasts, and double minutes (DMs) in cancer cells where the DNA is present in extrachromosomal circles. In addition, specialized extrachromosomal circles of DNA (eccDNA) have been noted to arise from repetitive genomic sequences like telomeric DNA or rDNA. Recently eccDNA arising from unique (nonrepetitive) DNA have been discovered in normal and malignant cells, raising interesting questions about their biogenesis, function and clinical utility.

View Article and Find Full Text PDF

Several studies suggest that soluble Amyloid β (Aβ) oligomer-induced aberrant neuronal cell cycle re-entry is the initial trigger for a significant part of the neuronal degeneration and loss in Alzheimer's disease (AD). In this study, we investigated the role of Ras, which is a well-known protooncoprotein, in soluble Aβ oligomer-induced aberrant neuronal cell cycle activation and subsequent cell loss using retinoic acid differentiated human SH-SY5Y neuroblastoma cells as model system. In line with previous literature, we showed that in vitro preparations of soluble Aβ42 oligomers triggered cell cycle activation but not cell proliferation.

View Article and Find Full Text PDF

In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3' ends of canonical histone mRNAs, is a key factor in histone biosynthesis.

View Article and Find Full Text PDF

Histone mRNA levels are cell cycle regulated, and the major regulatory steps are at the posttranscriptional level. A major regulatory mechanism is S-phase restriction of Stem-loop binding protein (SLBP) which binds to the 3' end of histone mRNA and participates in multiple steps of histone mRNA metabolism, including 3' end processing, translation and regulation of mRNA stability. SLBP expression is cell cycle regulated without significant change in its mRNA level.

View Article and Find Full Text PDF

The formation mechanism of space charges in polyimide (PI) which was exposed to dielectric barrier discharge (DBD) in SF6 medium and the effects of the space charges on interfacial and electrical properties of PI were investigated. The variation of normalized surface charge density on PI sample was calculated and illustrated for different DBD exposure times. The surface potential was measured to determine the effect of the space charges on the sample.

View Article and Find Full Text PDF

S phase is characterized by the replication of DNA and assembly of chromatin. This requires the synthesis of large amounts of histone proteins to package the newly replicated DNA. Histone mRNAs are the only mRNAs that do not have polyA tails, ending instead in a conserved stemloop sequence.

View Article and Find Full Text PDF

Histone mRNA levels are cell cycle regulated, and a major regulatory mechanism is restriction of stem-loop binding protein (SLBP) to S phase. Degradation of SLBP at the end of S phase results in cessation of histone mRNA biosynthesis, preventing accumulation of histone mRNA until SLBP is synthesized just before entry into the next S phase. Degradation of SLBP requires an SFTTP (58 to 62) and KRKL (95 to 98) sequence, which is a putative cyclin binding site.

View Article and Find Full Text PDF