Publications by authors named "Murat Arabaci"

Leveraging the advanced coherent optical communication technologies, this paper explores the feasibility of using four-dimensional (4D) nonbinary LDPC-coded modulation (4D-NB-LDPC-CM) schemes for long-haul transmission in future optical transport networks. In contrast to our previous works on 4D-NB-LDPC-CM which considered amplified spontaneous emission (ASE) noise as the dominant impairment, this paper undertakes transmission in a more realistic optical fiber transmission environment, taking into account impairments due to dispersion effects, nonlinear phase noise, Kerr nonlinearities, and stimulated Raman scattering in addition to ASE noise. We first reveal the advantages of using 4D modulation formats in LDPC-coded modulation instead of conventional two-dimensional (2D) modulation formats used with polarization-division multiplexing (PDM).

View Article and Find Full Text PDF

The performance of rate-0.8 4-ary LDPC code has been studied in a 50 GHz-spaced 40 Gb/s DWDM system with PDM-QPSK modulation. The net effective coding gain of 10 dB is obtained at BER of 10(-6).

View Article and Find Full Text PDF

We propose a coded N-dimensional modulation scheme suitable for ultra-high-speed serial optical transport. The proposed scheme can be considered as a generalization of OFDM, and hence, we call it as generalized OFDM (GOFDM). In this scheme, the orthogonal subcarriers are used as basis functions and the signal constellation points are defined over this N-dimensional linear space.

View Article and Find Full Text PDF

The multidimensional channel capacity studies indicate that the employment of multiple photon degrees of freedom-such as subcarrier, amplitude, phase, polarization, and space-can improve the spectral efficiency by several orders of magnitude higher than that claimed in any fiber-optic experiment reported to date. This dramatic increase in spectral efficiency through multiple photon degrees of freedom can provide revolutionary capabilities for future optical networks. Moreover, photons can carry both spin angular momentum (SAM) associated with polarization, and orbital angular momentum (OAM) associated with the azimuthal phase of the complex electric field.

View Article and Find Full Text PDF

An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied.

View Article and Find Full Text PDF

In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.

View Article and Find Full Text PDF