Publications by authors named "Murat A Yokus"

Wearable and wireless monitoring of biomarkers such as lactate in sweat can provide a deeper understanding of a subject's metabolic stressors, cardiovascular health, and physiological response to exercise. However, the state-of-the-art wearable and wireless electrochemical systems rely on active sweat released either high-exertion exercise, electrical stimulation (such as iontophoresis requiring electrical power), or chemical stimulation (such as by delivering pilocarpine or carbachol inside skin), to extract sweat under low-perspiring conditions such as at rest. Here, we present a continuous sweat lactate monitoring platform combining a hydrogel for osmotic sweat extraction, with a paper microfluidic channel for facilitating sweat transport and management, a screen-printed electrochemical lactate sensor, and a custom-built wireless wearable potentiostat system.

View Article and Find Full Text PDF

Operating at low sweat rates, such as those experienced by humans at rest, is still an unmet need for state-of-the-art wearable sweat harvesting and testing devices for lactate. Here, we report the on-skin performance of a non-invasive wearable sweat sampling patch that can harvest sweat at rest, during exercise, and post-exercise. The patch simultaneously uses osmosis and evaporation for long-term (several hours) sampling of sweat.

View Article and Find Full Text PDF

The development of wearable multiplexed biosensors has been focused on systems to measure sweat l-lactate and other metabolites, where the employment of the direct electron transfer (DET) principle is expected. In this paper, a fusion enzyme between an engineered l-lactate oxidase derived from Aerococcus viridans, AvLOx A96L/N212K mutant, which is minimized its oxidase activity and b-type cytochrome protein was constructed to realize multiplexed DET-type lactate and glucose sensors. The sensor with a fusion enzyme showed DET to a gold electrode, with a limited operational range less than 0.

View Article and Find Full Text PDF

Comprehensive metabolic panels are the most reliable and common methods for monitoring general physiology in clinical healthcare. Translation of this clinical practice to personal health and wellness tracking requires reliable, non-invasive, miniaturized, ambulatory, and inexpensive systems for continuous measurement of biochemical analytes. We report the design and characterization of a wearable system with a flexible sensor array for non-invasive and continuous monitoring of human biochemistry.

View Article and Find Full Text PDF

As microfabrication techniques and tissue engineering methods improve, microphysiological systems (MPS) are being engineered that recapitulate complex physiological and pathophysiological states to supplement and challenge traditional animal models. Although MPS provide unique microenvironments that transcend common 2D cell culture, without proper regulation of oxygen content, MPS often fail to provide the biomimetic environment necessary to activate and investigate fundamental pathways of cellular metabolism and sub-cellular level. Oxygen exists in the human body in various concentrations and partial pressures; moreover, it fluctuates dramatically depending on fasting, exercise, and sleep patterns.

View Article and Find Full Text PDF

A flexible and conformable dry electrode design on nonwoven fabrics is examined as a sensing platform for biopotential measurements. Due to limitations of commercial wet electrodes (e.g.

View Article and Find Full Text PDF