Background: Delayed diabetic wound healing is one of the clinical difficulties, the main reason is the limited angiogenesis ability. Deferriamine (DFO) is an iron chelating agent that can induce angiogenesis, but its application is limited due to its short half-life. Increasing the load and slow release performance of desferriamine is beneficial to accelerate diabetic wound healing.
View Article and Find Full Text PDF3D bioprinting techniques have enabled the fabrication of irregular large-sized tissue engineering scaffolds. However, complicated customized designs increase the medical burden. Meanwhile, the integrated printing process hinders the cellular uniform distribution and local angiogenesis.
View Article and Find Full Text PDFZIF-8 may experience ion-responsive degradation in ionic solutions, which will change its initial architecture and restrict its direct biological use. Herein, we report an abnormal phenomenon in which ZIF-8 induces large hydroxyapatite-like crystals when soaked directly in simulated body fluid. These crystals grew rapidly continuously for two weeks, with the volume increasing by over 10 folds.
View Article and Find Full Text PDFAll-liquid molding can be used to transform a liquid into free-form solid constructs, while maintaining internal fluidity. Traditional biological scaffolds, such as cured pre-gels, are normally processed in solid state, sacrificing flowability and permeability. However, it is essential to maintain the fluidity of the scaffold to truly mimic the complexity and heterogeneity of natural human tissues.
View Article and Find Full Text PDFBackground: Prostaglandin analogs have been found to have more versatile uses: treatment of open-angle glaucoma, high intraocular pressure, vitiligo, and other treatments. And prostaglandin analogs have been found to have an important role in the hair growth cycle. However, prostaglandin analogs have not been sufficiently studied for hair (including hair, eyelashes, and eyebrows) regeneration.
View Article and Find Full Text PDFAlthough methods are used to treat wounds clinically, there are still many challenges in the treatment of chronic wounds due to excessive inflammatory response, difficulties in epithelialization, vascularization, and other factors. With the increasing research on adipose-derived stem cells (ADSCs) in recent years, accumulating evidence has shown that ADSCs scan promotes the healing of chronic wounds by regulating macrophage function and cellular immunity and promoting angiogenesis and epithelialization. The present study reviewed the difficulties in the treatment of chronic wounds, as well as the advantages and the mechanism of ADSCs in promoting the healing of chronic wounds, to provide a reference for the stem cell therapy of chronic wounds.
View Article and Find Full Text PDFBackground: Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) possess similar proregenerative effects when injected into defects immediately following trauma. However, MSC-EVs are superior to MSCs in terms of storage and rejection reflection, while immediate administration of MSC-EVs is related to several target cells for most donor cells die within few weeks. Besides, the inflammatory cascade is incited, providing an unfavorable environment for target cells.
View Article and Find Full Text PDFBreast tissue engineering is a promising alternative intervention for breast reconstruction. Due to their low immunogenicity and well-preserved adipogenic microenvironment, decellularized adipose tissue (DAT) can potentially regenerate adipose tissue in vivo. However, the volume of adipose tissue regenerated from DAT can hardly satisfy the demand for breast reconstruction.
View Article and Find Full Text PDFBackground: Effective repair of full-thickness abdominal wall defects requires a patch with sufficient mechanical strength and anti-adhesion characteristics to avoid the formation of hernias and intra-abdominal complications such as intestinal obstruction and fistula. However, patches made from polymers or bio-derived materials may not meet these requirements and lack the bionic characteristics of the abdominal wall.
Materials And Methods: In this study, we report a consecutive electrospun method for preparing a double-layer structured nanofiber membrane (GO-PCL/CS-PCL) using polycaprolactone (PCL), graphene oxide (GO) and chitosan (CS).
Graphene Oxide (GO)-related hydrogels have been extensively studied in hard tissue repair, because GO can not only enhance the mechanical properties of polymers but also promote osteogenic differentiation of mesenchymal stem cells. However, simple GO-related hydrogels are not ideal for the repair of osteoporotic bone defects as the overactive osteoclasts in osteoporosis. Alendronate (Aln) is known to inhibit osteoclasts and may bind to GO through covalent connection.
View Article and Find Full Text PDFBackground: Application of distant skin flaps in facial defect reconstruction has limitations such as leaving a patch like appearance and being restricted by the length of the vascular pedicles. Leveraging the abundance of blood supply from superficial muscular aponeurotic system (SMAS), a local skin flap pedicled by SMAS can be used to avoid the aforementioned problems. Herein, we report the clinical application as well as the anatomical study of SMAS-pedicled skin flaps.
View Article and Find Full Text PDFResearches of biomaterials for osteoporotic bone defects focus on the improvement of its anti-osteoporosis ability, due to osteoporosis is a kind of systemic and long-range bone metabolism disorder. Nevertheless, how to steadily deliver anti-osteoporosis drugs in osteoporotic bone defects is rarely studied. Reported evidences have shown that alendronate (Aln) is known to not only restrain osteoclasts from mediating bone resorption but also stimulate osteoblasts to regenerate bone tissue.
View Article and Find Full Text PDFThe survival of transplanted cells and tissues in bone regeneration requires a microenvironment with a vibrant vascular network. A tissue engineering chamber can provide this . However, the commonly used silicone chamber is biologically inert and can cause rejection reactions and fibrous capsule.
View Article and Find Full Text PDFBackground: Impaired wound healing might be associated with many issues, especially overactive of reactive oxygen species (ROS), deficiency of blood vessels and immature of epidermis. N-acetylcysteine (NAC), as an antioxidant, could solve these problems by inhibiting overreactive of ROS, promoting revascularization and accelerating re-epithelialization. How to deliver NAC in situ with a controllable releasing speed still remain a challenge.
View Article and Find Full Text PDFBreast tissue engineering is a promising alternative to standard treatments for breast defects. Although there is a consensus that the mechanical property of the scaffold should best match the reconstructed tissue, the simulation of the soft and elastic tactility of native breast tissues using conventional materials and architecture design requires further study. Previous research has shown that the crystal microstructure-like design can drastically alter the mechanical properties of the constructed scaffolds.
View Article and Find Full Text PDFBackground: The efficacy of autologous fat transplantation is reduced by fat absorption and fibrosis that are closely related to unsatisfactory vascularization. Extracellular vesicles are key components of the cell secretome, which can mirror the functional and molecular characteristics of their parental cells. Growing evidence has revealed that adipose-derived mesenchymal stem cells have the ability to enhance vascularization, which is partly ascribed to extracellular vesicles.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2019
The developing bone graft substitutes have become a promising strategy for repairing large bone loss. Aerogels that made from natural polymers were widely investigated for synthetic bone graft due to their high porosity and great biocompatibility. However, the mechanical properties of natural polymer aerogel are extremely poor for large bone repair.
View Article and Find Full Text PDFHuman skin wound repair may result in various outcomes with most of them leading to scar formation. Commonly seen in many cutaneous wound healing cases, hypertrophic scars are considered as phenotypes of abnormal wound repair. To prevent the formation of hypertrophic scars, efforts have been made to understand the mechanism of scarring following wound closure.
View Article and Find Full Text PDF: Microtissues constructed with hydrogels promote cell expansion and specific differentiation by mimicking the microarchitecture of native tissues. However, the suboptimal mechanical property and osteogenic activity of microtissues fabricated by natural polymers need further improvement for bone reconstruction application. Core-shell designed structures are composed of an inner core part and an outer part shell, combining the characteristics of different materials, which improve the mechanical property of microtissues.
View Article and Find Full Text PDFTissue engineering is a promising technology used as an alternative to organ/tissue transplantation which is often limited by donor shortage. The construction of large-sized engineered tissue requires a fast and sufficient vascularization process. Previous studies have shown that hypoxia-inducible factor (HIF) -1α may promote the vascularization process implying that stabilized HIF-1α can be applied in the engineering of large-sized tissue.
View Article and Find Full Text PDFPCL (poly-caprolactone) nanofibers have good biocompatibility and high porosity, which are usually utilized for application in wound dressings. However, wound healing could be hindered by the overproduction of reactive oxygen species (ROS) and different factors. Pure nanofibers cannot satisfy these requirements of wound healing.
View Article and Find Full Text PDF