The amyloid β-peptide (Aβ) is the major structural component of amyloid fibrils in the plaques of brains of Alzheimer's disease patients. Numerous studies have addressed important aspects of secondary and tertiary structure of fibrils. In electron microscopic images, fibrils often bundle together.
View Article and Find Full Text PDFThe green tea compound epigallocatechin-3-gallate (EGCG) inhibits Alzheimer's disease β-amyloid peptide (Aβ) neurotoxicity. Solution-state NMR allows probing initial EGCG-Aβ interactions. We show that EGCG-induced Aβ oligomers adopt a well-defined structure and are amenable for magic angle spinning solid-state NMR investigations.
View Article and Find Full Text PDFThe structures of oligomeric intermediate states in the aggregation process of Alzheimer's disease β-amyloid peptides have been the subject of debate for many years. Bacterial inclusion bodies contain large amounts of small heat shock proteins (sHSPs), which are highly homologous to those found in the plaques of the brains of Alzheimer's disease patients. sHSPs break down amyloid fibril structure in vitro and induce oligomeric assemblies.
View Article and Find Full Text PDFFollowing ectodomain shedding by beta-secretase, successive proteolytic cleavages within the transmembrane sequence (TMS) of the amyloid precursor protein (APP) catalyzed by gamma-secretase result in the release of amyloid-beta (Abeta) peptides of variable length. Abeta peptides with 42 amino acids appear to be the key pathogenic species in Alzheimer's disease, as they are believed to initiate neuronal degeneration. Sulindac sulfide, which is known as a potent gamma-secretase modulator (GSM), selectively reduces Abeta42 production in favor of shorter Abeta species, such as Abeta38.
View Article and Find Full Text PDFSeveral enzymes are known to accumulate in the cornea in unusually high concentrations. Based on the analogy with lens crystallins, these enzymes are called corneal crystallins, which are diverse and species-specific. Examining crystallins in lens and cornea in multiple species provides great insight into their evolution.
View Article and Find Full Text PDFNeuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein of the calcium sensor family, modulates various functions in intracellular signaling pathways. The N-terminal glycine in this protein is myristoylated, which is presumably necessary for its physiological functions. In order to understand the structural role of myristoylation and calcium on conformational stability, we have investigated the equilibrium unfolding and refolding of myristoylated and non-myristoylated NCS-1.
View Article and Find Full Text PDFNeuronal calcium sensor-1, a protein of calcium sensor family, is known to have four structural EF-hands. We have synthesised peptides corresponding to all the four EF-hands and studied their conformation and calcium-binding. Our data confirm that the first putative site, a non-canonical one (EF1), does not bind calcium.
View Article and Find Full Text PDFNeuronal calcium sensor-1 (NCS-1), a Ca(2+)-binding protein, plays an important role in the modulation of neurotransmitter release and phosphatidylinositol signaling pathway. It is known that the physiological activity of NCS-1 is governed by its myristoylation. Here, we present the role of myristoylation of NSC-1 in governing Ca(2+) binding and Ca(2+)-induced conformational changes in NCS-1 as compared with the role in the nonmyristoylated protein.
View Article and Find Full Text PDF