Triple-negative breast cancer (TNBC) is the most aggressive and prevalent subtype of breast cancer in women worldwide. Currently, chemotherapy remains the main modality for the treatment at an early stage, as there is no approved targeted therapy for early TNBC. In this review, we investigate the use of microRNAs (miRNAs), which play a key role in the post-transcriptional regulation of genes involved in the key biological processes, namely proliferation, differentiation, angiogenesis, migration, apoptosis, and carcinogenesis.
View Article and Find Full Text PDFExosomes are cell-cell communicators emerging as a new paradigm for noninvasive diagnosis and prognosis of treatment response. Exosomal tetraspanin proteins like CD63, CD9 and CD81 play a critical role in sorting, selective recruitment of biomolecules, target selection, cell-specific entry, capturing, angiogenesis and vasculogenesis. These tetraspanins are being used as markers for oral, colorectal and colon cancers and glioblastoma.
View Article and Find Full Text PDFTriple negative breast cancer is a clinically challenging subtype due to lack of biomarker for rational targeted therapy. Lipid rafts are cholesterol enriched rigid platforms, which colocalize signalling molecules of cancer progression. This study explores the effect of lipid rafts disruption by cholesterol depleting agent, MβCD on induction of apoptosis and expression of WNT receptor LRP6, survivin and common apoptotic markers in TNBC cell lines.
View Article and Find Full Text PDF