Our study specifically explores the biosynthesis of copper-silver bimetallic nanoparticles (Cu-Ag BMNPs) using Argyreia nervosa (AN) plant leaf green extract as a versatile agent for capping, reducing, and stabilizing. This biosynthesis method is characterized by its simplicity and cost-effectiveness, utilizing silver nitrate (AgNO) and cupric oxide (CuO) as precursor materials. Our comprehensive characterization of the Cu-Ag BMNPs, employing techniques such as X-ray diffraction (XRD), UV-Vis spectrometry, scanning electron microscopy (SEM), Zetasizer, and Fourier transformed infrared spectrometry (FTIR).
View Article and Find Full Text PDFMixed-halide perovskite materials (MHSCs) hold significant interest in photonics applications owing to their inherent advantages, including tunable bandgap properties, remarkable defect tolerance characteristics, and facile processability. These attributes position MHSCs as up-and-coming materials for various applications. However, the commercialization of these materials is severely affected by external factors, such as humidity and oxygen.
View Article and Find Full Text PDFMixed halide perovskite (MHP) materials are promising candidates for photonic applications, owing to their tunable bandgap and pronounced optoelectronic properties. However, phase segregation in these materials severely impacts their scalability. The additive engineering (AE) strategy in the growth of most perovskite crystals (PSCs) has proven more effective.
View Article and Find Full Text PDFPerovskites have achieved immense progression in optoelectronic device applications owing to their fascinating intrinsic properties. However, the integration of perovskites in lighting applications has been retarded due to the challenges involved in achieving their deep blue light-emitting diodes (LEDs). Unlike other color counterparts, obtaining a stable, defect-tolerant, and high-band gap perovskite material for deep blue emission is an arduous task.
View Article and Find Full Text PDFHerein, the synthesis and characterization of ideal size (∼10 and 40 nm, in diameter) AuNPs (gold nanoparticles) were reported. Two different organic solvents such as DMF (dimethyl formamide) and NMPL (-methyl-2-pyrrolidone) were used to synthesize AuNPs along with agents reducing agents such as NaBH (sodium borohydrate) and NaCHO (sodium citrate). The combination of [(HAuCl)-(DMF)-(NaBH)] gives AuNPs with an avg.
View Article and Find Full Text PDFWhile the unabated race persists in achieving record efficiencies in solar cells and other photonic/optoelectronic devices using lead halide perovskite absorbers, a comprehensive picture of the correlated third-order nonlinear optical (NLO) properties is yet to be established. The present study is aimed at deciphering the role of dopants in multiphoton absorption properties of intentionally engineered CsPbBr colloidal nanocrystals (NCs). The charge separation of the plasmon-semiconductor conduction band owing to the hot electron transfer at the interface was demystified using the dynamics of the bleached spectral data from femtosecond (fs) transient absorption spectroscopy with broadband capabilities.
View Article and Find Full Text PDFFor the first time, CZTS ink was formulated using low-temperature heating up synthesis of NCs. Besides, the influence of powder concentration on the properties of the films was examined. Subsequently, the CZTS films were annealed under a selenium (Se)/argon (Ar) atmosphere at different temperatures to enhance their properties.
View Article and Find Full Text PDFAn n-p type homostructural metal-free graphitic carbon nitride (g-CN) semiconductor is designed and developed for pollutant abatement and energy storage application. The successful grafting of vibrio-like morphology-based g-CN by 2, 5-Thiophenedicarboxylic acid (TDA) molecule and the development of amide-type linkage substantiated the prosperous uniting of g-CN with organic TDA moiety is demonstrated. An extended π-conjugative TDA grafted g-CN exhibited band gap tunability with broadband optical absorbance in the visible region.
View Article and Find Full Text PDFUnintentional self-doping in semiconductors through shallow defects is detrimental to optoelectronic device performance. It adversely affects junction properties and it introduces electronic noise. This is especially acute for solution-processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization.
View Article and Find Full Text PDFMonolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene-poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C-butyric acid methyl ester (PCBM)-top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au.
View Article and Find Full Text PDFPerovskite nanocrystals (NCs) have become leading candidates for solution-processed optoelectronics applications. While substantial work has been published on 3-D perovskite phases, the NC form of the zero-dimensional (0-D) phase of this promising class of materials remains elusive. Here we report the synthesis of a new class of colloidal semiconductor NCs based on CsPbBr, the 0-D perovskite, enabled through the design of a novel low-temperature reverse microemulsion method with 85% reaction yield.
View Article and Find Full Text PDFChemical bath deposition (CBD) of tin oxide (SnO) thin films as an electron-transport layer (ETL) in a planar-heterojunction n-i-p organohalide lead perovskite and organic bulk-heterojunction (BHJ) solar cells is reported. The amorphous SnO (a-SnO) films are grown from a nontoxic aqueous bath of tin chloride at a very low temperature (55 °C) and do not require postannealing treatment to work very effectively as an ETL in a planar-heterojunction n-i-p organohalide lead perovskite or organic BHJ solar cells, in lieu of the commonly used ETL materials titanium oxide (TiO) and zinc oxide (ZnO), respectively. Ultraviolet photoelectron spectroscopy measurements on the glass/indium-tin oxide (ITO)/SnO/methylammonium lead iodide (MAPbI)/2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene device stack indicate that extraction of photogenerated electrons is facilitated by a perfect alignment of the conduction bands at the SnO/MAPbI interface, while the deep valence band of SnO ensures strong hole-blocking properties.
View Article and Find Full Text PDFUnderstanding defect chemistry, particularly ion migration, and its significant effect on the surface's optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk.
View Article and Find Full Text PDFSince compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT). However, these types of studies on perovskite thin-film devices are impeded by the morphological and compositional heterogeneity of the films and their ill-defined surfaces. Here, we use well-defined ligand-protected perovskite nanocrystals (NCs) as model systems to elucidate the role of heterovalent doping on charge-carrier dynamics and energy level alignment at the interface of perovskite NCs with molecular acceptors.
View Article and Find Full Text PDFHybrid organic-inorganic perovskite crystals have recently become one of the most important classes of photoactive materials in the solar cell and optoelectronic communities. Albeit improvements have focused on state-of-the-art technology including various fabrication methods, device architectures, and surface passivation, progress is yet to be made in understanding the actual operational temperature on the electronic properties and the device performances. Therefore, the substantial effect of temperature on the optoelectronic properties, charge separation, charge recombination dynamics, and photoconversion efficiency are explored.
View Article and Find Full Text PDFA two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.
View Article and Find Full Text PDFThe number of studies on organic-inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskite's three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2016
High-quality perovskite monocrystalline films are successfully grown through cavitation-triggered asymmetric crystallization. These films enable a simple cell structure, ITO/CH3 NH3 PbBr3 /Au, with near 100% internal quantum efficiency, promising power conversion efficiencies (PCEs) >5%, and superior stability for prototype cells. Furthermore, the monocrystalline devices using a hole-transporter-free structure yield PCEs ≈6.
View Article and Find Full Text PDFControllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics.
View Article and Find Full Text PDFSingle crystals of hybrid perovskites have shown remarkably improved physical properties compared to their polycrystalline film counterparts, underscoring their importance in the further development of advanced semiconductor devices. Here we present a new method of growing sizable CH3NH3PbCl3 single crystals based on the retrograde solubility behavior of hybrid perovskites. We show, for the first time, the energy band structure, charge recombination, and transport properties of CH3NH3PbCl3 single crystals.
View Article and Find Full Text PDFWe demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic-organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes.
View Article and Find Full Text PDF