For the last several decades, semiconducting materials and nanocomposites have received a lot of interest in generating highly efficient photocatalysts to destroy organic pollutants and eradicate bacteria. This study uses a simple deposition and precipitation approach at ambient temperature to create a unique and efficient AgI-CdO heterojunction. DRS, IR, SEM, EDS, XRD, EIS, and TEM were utilized to identify the material.
View Article and Find Full Text PDFThe preparation of visible light-responsive efficient photocatalysts for removing organic contaminants from water and killing cancer cells has gotten a lot of attention due to the growing global concern. In this study, we have successfully fabricated an efficient AgBr/β-MnO nanocomposite via a facile deposition and precipitation method at room temperature. Techniques such as XRD, SEM-EDS, TEM, DRS, PL, EIS, ESR, and FTIR were used to determine the crystalline, structural, morphological, optical, and other properties.
View Article and Find Full Text PDFRecently, the preparation of visible-light-sensitive catalysts for the decomposition of organics has been of great interest. Herein, we report a single-step facile co-polymerization via the calcination process to produce a phenyl-modified-g-CN semiconducting material. The product was characterized using standard analytical techniques.
View Article and Find Full Text PDFA series of new 1,2,3-triazole-tethered coumarin conjugates linked by N-phenylacetamide was efficiently synthesized via the click chemistry approach in excellent yields. The synthesized conjugates were evaluated for their in vitro antifungal and antioxidant activities. Antifungal activity determination was carried out against fungal strains such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger and Cryptococcus neoformans.
View Article and Find Full Text PDF