We report the synthesis and solution behavior of photo-, temperature-, pH-, and ion-responsive weak polyelectrolyte spherical brushes under different modes of confinement. The spherical brushes were prepared by copolymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and 7-(2-methacryloyloxyethoxy)-4-methylcoumarin anchored to silica nanoparticles via surface-initiated atom transfer radical polymerization. The photo-cross-linking and reversibility of the nanoparticle-attached coumarin entities are detected by UV-visible spectroscopy and dynamic light scattering (DLS).
View Article and Find Full Text PDFBiocompatible and zwitterionic poly(sulfobetaine methacrylate) (PSBMA) was grafted onto the surface of initiator-modified silica nanoparticles via surface-initiated atom transfer radical polymerization. The resultant samples were characterized via nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. Their molecular weights and molecular weight distributions were determined via gel permeation chromatography after the removal of silica by etching.
View Article and Find Full Text PDFA two-phase method is exploited to prepare many kinds of nearly monodisperse, highly crystalline, size- and shape-controlled, surface-property-tunable inorganic nanocrystals, such as metal, semiconducting, magnetic, dielectric, and rare earth nanocrystals. The reaction of the two-phase system happens at the interface between the oil (nonpolar) and water (polar) phases and the interface is an exclusive site for both nucleation and growth. Interestingly, many solvent pairs with a clear interface can be applied to synthesize inorganic nanocrystals successfully.
View Article and Find Full Text PDF