In this research, we propose an environmentally friendly method for producing hematite nanoparticles (H-NPs) from natural hematite ore, focusing on their application as efficient contrast agents in x-ray and computed tomography (CT) imaging for medical purposes. The process involves the reduction of iron oxide within the ore to attain the desired hematite phase, crucial for synthesizing H-NPs. To ensure sustainability, we adopted a Green Chemistry approach, utilizing a combination of carbon soot and limestone for the purification process, thereby achieving eco-conscious production.
View Article and Find Full Text PDFThe present study is aimed at an efficient photocatalytic degradation of industrially important reactive dyes using phycocyanin extract as a photocatalyst. The percentage of dye degradation was evidenced by a UV-visible spectrophotometer and FT-IR analysis. The degraded water was checked for its complete degradation by varying pH from 3 to 12.
View Article and Find Full Text PDFThe colorful reactive dyes are toxic, carcinogenic to living organisms and pollute the water environment. We, for the first time, have studied the lab-scale synthesis of novel and eco-friendly carbon quantum dots (CQDs) from Spirulina platensis by microwave-assisted technology. Fluorescence, absorbance, emission, and excitation spectra of biosynthesized CQDs were recorded by UV transilluminator, UV, and photoluminescence spectrophotometer.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2023
In recent times, reduced graphene oxide has gained more attention in various fields. In our study, a direct synthesis of reduced graphene oxide using a novel carbon-rich agro-waste from Pennisetum glaucum was used. Ferrocene acted as an oxidizing agent during thermal degradation at 300 °C for 15 and 20 min to promote graphene oxide and reduced graphene oxide formation.
View Article and Find Full Text PDFThe current study outlines the toxicity-free green synthesis of reduced graphene oxide (GO) using Celosia argenta. The synthesized sample was characterized by UV-visible spectroscopy with a strong absorption peak at 260 nm due to redshift. The 2θ value around 24.
View Article and Find Full Text PDFIn our present study, the photocatalytic degradation of malachite green (MG) an organic dye was carried out using a phycocyanin extract of Spirulina platensis under the irradiation of sunlight. The aim of the present study is to incorporate a simple, novel, an eco-friendly, and cost-effective degradation of dyes without using any harmful metals and chemicals. It was observed that 25 ppm of MG dye got degraded nearly to 100 % at 3 h.
View Article and Find Full Text PDFThe current study focuses on microwave-assisted zinc oxide quantum dots synthesis (ZnO-QDs) from zinc oxide bionanocomposite (ZnO-BC) preparation. The novelty lies in the preparation of ZnO-QDs, since the natural elements present in ZnO-BC itself acted as a surface penetration enhancer without using any chemical agent. Under ultraviolet (UV) light ZnO-QDs emitted a blue glow, confirming the fluorescence property.
View Article and Find Full Text PDFPurpose: Production of highly penetrable and targetable drug delivery particles is mainly focused by current therapy and such focus is achieved in our present study. The carbon nanoparticle (CNP) prepared from purely natural source was modified from spherical shape to cylindrical floral like structure after treatment with the anticancer drug methotrexate (CM).
Methods: The physiochemical properties of the CNP and CM was characterized using FT-IR/Raman Spectrometer, XRD, SEM, AFM, particle size analyzer and its biological evaluation using haemolysis and MTT assay.
There is an emerging need for the development of new anticancer nanocomposite which exhibits imaging properties and targeted drug delivery. In the present study, a nanobiocomposite was prepared, in this direction, which contains carbon nanoparticles (CNP), methotrexate (Mtx) and asparaginase (Asp) coupled with fluorescein isothiocyanate (FITC). The prepared nanobiocomposite kills only the cancer cells due to the presence of Mtx which is a folic acid analogue and targets the cancer cells due to the over expression of folate receptors on their surface and apoptosis occurs due to the anticancer activity of enzyme asparaginase.
View Article and Find Full Text PDFThe modification of carbon nanoparticles (CNPs) using biological molecules is important in the field of chemical biology, as the CNPs have the potential to deliver the drugs directly to the targeted cells and tissues. We have modified the CNPs by coating bovine serum albumin (BSA) on their surfaces and loaded with methotrexate (Mtx). Infrared spectra have revealed the coating of BSA and Mtx on CNP (CBM).
View Article and Find Full Text PDFThe present study describes the antimicrobial activity of C-AuNp-Amp (chitosan-capped gold nanoparticles coupled with ampicillin). C-AuNp-Amp was synthesized using the wet precipitation method and characterized using FTIR (Fourier-transform IR) spectroscopy and AFM (atomic force microscopy) techniques. The optimal level of ampicillin concentration that couples with the C-AuNp nanocomposite was determined by using UV-visible spectroscopy.
View Article and Find Full Text PDF