Background: LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders.
View Article and Find Full Text PDFThe administration of antisense oligonucleotides (AOs) to skip one or more exons in mutated forms of the DMD gene and so restore the reading frame of the transcript is one of the most promising approaches to treat Duchenne muscular dystrophy (DMD). At present, preclinical studies demonstrating the efficacy and safety of long-term AO administration have not been conducted. Furthermore, it is essential to determine the minimal effective dose and frequency of administration.
View Article and Find Full Text PDFProlonged depolarization of skeletal muscle cells induces entry of extracellular calcium into muscle cells, an event referred to as excitation-coupled calcium entry. Skeletal muscle excitation-coupled calcium entry relies on the interaction between the 1,4-dihydropyridine receptor on the sarcolemma and the ryanodine receptor on the sarcoplasmic reticulum membrane. In this study, we directly measured excitation-coupled calcium entry by total internal reflection fluorescence microscopy in human skeletal muscle myotubes harbouring mutations in the RYR1 gene linked to malignant hyperthermia (MH) and central core disease (CCD).
View Article and Find Full Text PDFSelenium, a trace element that is fundamental to human health, is incorporated into some proteins as selenocysteine (Sec), generating a family of selenoproteins. Sec incorporation is mediated by a multiprotein complex that includes Sec insertion sequence-binding protein 2 (SECISBP2; also known as SBP2). Here, we describe subjects with compound heterozygous defects in the SECISBP2 gene.
View Article and Find Full Text PDFCongenital muscular dystrophies are a group of rare neuromuscular disorders with a wide spectrum of clinical phenotypes. Recent advances in understanding the molecular pathogenesis of congenital muscular dystrophy have enabled better diagnosis. However, medical care for patients with congenital muscular dystrophy remains very diverse.
View Article and Find Full Text PDFThe muscular dystrophies are inherited disorders characterised by progressive muscle wasting and weakness. Stem cell therapy is considered to be one of the most promising strategies for treating muscular dystrophies. In this review, we first examine the evidence that a stem cell could be used to treat muscular dystrophies, and then discuss the criteria that an ideal stem cell should meet.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is associated with mutations in the dystrophin gene that disrupt the open reading frame whereas the milder Becker's form is associated with mutations which leave an in-frame mRNA transcript that can be translated into a protein that includes the N- and C- terminal functional domains. It has been shown that by excluding specific exons at, or adjacent to, frame-shifting mutations, open reading frame can be restored to an out-of-frame mRNA, leading to the production of a partially functional Becker-like dystrophin protein. Such targeted exclusion can be achieved by administration of oligonucleotides that are complementary to sequences that are crucial to normal splicing of the exon into the transcript.
View Article and Find Full Text PDFSix genes including POMT1, POMT2, POMGNT1, FKRP, Fukutin (FKTN) and LARGE encode proteins involved in the glycosylation of α-dystroglycan (α-DG). Abnormal glycosylation of α-DG is a common finding in Walker-Warburg syndrome (WWS), muscle-eye-brain disease (MEB), Fukuyama congenital muscular dystrophy (FCMD), congenital muscular dystrophy types 1C and 1D and some forms of autosomal recessive limb-girdle muscular dystrophy (LGMD2I, LGMD2K, LGMD2M), and is associated with mutations in the above genes. FCMD, caused by mutations in Fukutin (FKTN), is most frequent in Japan, but an increasing number of FKTN mutations are being reported outside of Japan.
View Article and Find Full Text PDFCongenital myopathy with fibre type disproportion (CFTD) has been associated with mutations in ACTA1, SEPN1, RYR1 and TPM3 genes. We report the clinico-pathological and electrophysiological features of 2 unrelated cases with heterozygous TPM3 mutation. Case 1 is a 19-year-old lady who presented with motor delay in infancy, respiratory failure in early teens requiring non-invasive ventilation despite being ambulant, ptosis, axial more than proximal weakness and scoliosis.
View Article and Find Full Text PDFObjective: Centronuclear myopathy (CNM) is a rare congenital myopathy characterized by prominence of central nuclei on muscle biopsy. CNM has been associated with mutations in MTM1, DNM2, and BIN1 but many cases remain genetically unresolved. RYR1 encodes the principal sarcoplasmic reticulum calcium release channel and has been implicated in various congenital myopathies.
View Article and Find Full Text PDFAntisense oligomer induced exon skipping is showing promise as a therapy to reduce the severity of Duchenne muscular dystrophy. To date, the focus has been on excluding single exons flanking frame-shifting deletions in the dystrophin gene. However, a third of all Duchenne muscular dystrophy causing mutations are more subtle DNA changes.
View Article and Find Full Text PDFBackground: Duchenne Muscular Dystrophy (DMD) is a progressively debilitating neuromuscular disorder markedly affecting family life.
Aims Of The Study: To obtain descriptive accounts from siblings about impact and coping with DMD and consider implications for psychological function.
Methods: Semi-structured interviews with a purposive sample of healthy siblings of young people with DMD attending a regional centre.
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell.
View Article and Find Full Text PDFThe main histological abnormality in congenital fiber type disproportion (CFTD) is hypotrophy of type 1 (slow twitch) fibers compared to type 2 (fast twitch) fibers. To investigate whether mutations in RYR1 are a cause of CFTD we sequenced RYR1 in seven CFTD families in whom the other known causes of CFTD had been excluded. We identified compound heterozygous changes in the RYR1 gene in four families (five patients), consistent with autosomal recessive inheritance.
View Article and Find Full Text PDFNocturnal ventilation has improved the physical status and life span of childhood neuromuscular disorders: the purpose of this study was to assess the implications for sleep and well-being in patients and carers. Ten young men (age range 12-25 years) with neuromuscular disorders on assisted ventilation and/or their main carers completed questionnaires on sleep quality, physical and psychological well-being, family burden and function. Both patients and parents expressed satisfaction with ventilation treatment.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
September 2010
Objective: The congenital myasthenic syndromes (CMS) are a group of genetic disorders of neuromuscular transmission causing fatigable weakness. Symptoms may be present from birth, but diagnosis is often delayed for several years, notably in post-synaptic CMS due to mutations in the DOK7 gene. Recently, we noted a subgroup of children with CMS in whom congenital stridor and bilateral vocal cord palsy predated other symptoms.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is characterised by the absence of dystrophin in muscle biopsies, although residual dystrophin can be present, either as dystrophin-positive (revertant) fibres or traces. As restoration of dystrophin expression is the end point of clinical trials, such residual dystrophin is a key factor in recruitment of patients and may also confound the analysis of dystrophin restoration in treated patients, if, as previously observed in the mdx mouse, revertant fibres increase with age. In 62% of the diagnostic biopsies reports of 65 DMD patients studied, traces or revertants were recorded with no correlation between traces or revertants, the patients' performance, or corticosteroids response.
View Article and Find Full Text PDFObjective: The aim of the study was to evaluate whether the visual analysis of muscle magnetic resonance imaging scans can identify specific patterns of muscle involvement.
Methods: We assessed scans from 83 patients with muscle disorders characterized by rigidity of the spine secondary to mutations in 4 different genes. The conditions studied were rigid spine syndrome (SEPN1 defects), Bethlem myopathy, and Ullrich congenital muscular dystrophy, allelic disorders caused by Col6A1, Col6A2, and Col6A3 mutations, the autosomal dominant form of Emery-Dreifuss muscular dystrophy (LMNA defects) and calpain-deficient limb girdle muscular dystrophy (CAPN3 defects).
Merosin deficient congenital muscular dystrophy 1A (MDC1A) results from mutations in the LAMA2 gene. We report 51 patients with MDC1A and examine the relationship between degree of merosin expression, genotype and clinical features. Thirty-three patients had absence of merosin and 13 showed some residual merosin.
View Article and Find Full Text PDFThe skeletal muscle ryanodine receptor plays a crucial role in excitation-contraction (EC) coupling and is implicated in various congenital myopathies. The periodic paralyses are a heterogeneous, dominantly inherited group of conditions mainly associated with mutations in the SCN4A and the CACNA1S genes. The interaction between RyR1 and DHPR proteins underlies depolarization-induced Ca(2+) release during EC coupling in skeletal muscle.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by the lack of functional dystrophin protein, most commonly as a result of a range of out-of-frame mutations in the DMD gene. Modulation of pre-mRNA splicing with antisense oligonucleotides (AOs) to restore the reading frame has been demonstrated in vitro and in vivo, such that truncated but functional dystrophin is expressed. AO-induced skipping of exon 51 of the DMD gene, which could treat 13% of DMD patients, has now progressed to clinical trials.
View Article and Find Full Text PDF