Susanne Sievers and Daniela Zühlke were not included as authors in the original publication [...
View Article and Find Full Text PDFExtreme acidophilic bacteria like sp. require an efficient enzyme system to counteract strong oxygen stress conditions in their natural habitat. The genome of sp.
View Article and Find Full Text PDFVariations in water availability represent a foremost stress factor affecting the growth and survival of microorganisms. Acidophilic bioleaching bacteria are industrially applied for releasing metals from mineral sulphides, and they are considered extremely tolerant to oxidative conditions prevailing in acidic bioleaching environments. Such processes usually are performed in heaps and thus these microorganisms are also exposed to intermittent desiccations or high osmolarity periods that reduce the water availability.
View Article and Find Full Text PDFMetal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV).
View Article and Find Full Text PDFExtreme acidophiles thrive in harsh environments characterized by acidic pH, high concentrations of dissolved metals and high osmolarity. Most of these microorganisms are chemolithoautotrophs that obtain energy from low redox potential sources, such as the oxidation of ferrous ions. Under these conditions, the mechanisms that maintain homeostasis of proteins (proteostasis), as the main organic components of the cells, are of utmost importance.
View Article and Find Full Text PDFThe bioleaching process is carried out by aerobic acidophilic iron-oxidizing bacteria that are mainly mesophilic or moderately thermophilic. However, many mining sites are located in areas where the mean temperature is lower than the optimal growth temperature of these microorganisms. In this work, we report the obtaining and characterization of two psychrotolerant bioleaching bacterial strains from low-temperature sites that included an abandoned mine site in Chilean Patagonia (PG05) and an acid rock drainage in Marian Cove, King George Island in Antarctic (MC2.
View Article and Find Full Text PDFFe-S clusters are versatile and essential cofactors that participate in multiple and fundamental biological processes. In , the biogenesis of these cofactors requires either the housekeeping Isc pathway, or the stress-induced Suf pathway which plays a general role under conditions of oxidative stress or iron limitation. In the present work, the Fe-S cluster assembly Isc and Suf systems of acidophilic Bacteria and Archaea, which thrive in highly oxidative environments, were studied.
View Article and Find Full Text PDFMicroorganism survival in the presence of toxic substances such as metal(loid)s lies chiefly on their ability to resist (or tolerate) such elements through specific resistance mechanisms. Among them, toxicant reduction has attracted the attention of researchers because metal(loid)-reducing bacteria are being used to recover and/or decontaminate polluted sites. Particularly, our interest is to analyze the toxicity of gold and tellurium compounds for the environmental microorganism MF01 and also to explore the generation of nanostructures to be used in future biotechnological processes.
View Article and Find Full Text PDFMicrobes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates.
View Article and Find Full Text PDFThe genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%).
View Article and Find Full Text PDFThe metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical.
View Article and Find Full Text PDFThe tellurium oxyanion tellurite (TeO3 (2-)) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te(0)). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity.
View Article and Find Full Text PDFTellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium.
View Article and Find Full Text PDFThe constant emergence of antibiotic multi-resistant pathogens is a concern worldwide. An alternative for bacterial treatment using nM concentrations of tellurite was recently proposed to boost antibiotic-toxicity and a synergistic effect of tellurite/cefotaxime (CTX) was described. In this work, the molecular mechanism underlying this phenomenon is proposed.
View Article and Find Full Text PDF