Comp Biochem Physiol A Mol Integr Physiol
January 2025
Most organisms possess endogenous circadian clocks that synchronise their physiology and behaviour with environmental cycles, with the light-dark (LD) cycle being the most potent synchronising signal. Consequently, it can be hypothesised that animals that have evolved in the dark, as in caves or deep sea, may no longer possess a functional light-entrained biological clock. In this research, the blind cavefish Astyanax mexicanus was selected as a model organism to investigate the potential effects of daily light conditions on the circadian timekeeping mechanisms.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
October 2024
Previous studies have revealed the stimulatory and inhibitory actions of gonadotropin-releasing hormone (GnRH) and gonadotropin-inhibitory hormone (GnIH) on the control of reproduction in European sea bass (Dicentrarchus labrax) and other vertebrates, respectively. However, information on the possible interactions between GnRH and GnIH on cell signaling is sparse in vertebrates. In the current study, we investigated if activation of sea bass GnIH receptor (GnIHR) can interfere with GnRH receptor II-1a (GnRHR-II-1a) involving the PKA pathway.
View Article and Find Full Text PDFGonadotropin-inhibitory hormone (GnIH) was the first reported hypothalamic neuropeptide inhibiting reproduction in vertebrates. Since its discovery in the quail brain, its orthologs have been identified in a variety of vertebrate species and even protochordates. Depending on the species, the GnIH precursor polypeptides comprise two, three or four mature peptides of the RFamide family.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
August 2023
[This corrects the article DOI: 10.3389/fendo.2023.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2023
Spexin (Spx) is a recently characterized neuropeptide implicated in multiple physiological processes in vertebrates, including reproduction, food intake, and regulation of anxiety and stress. Two orthologs (Spx1 and Spx2) are present in some nonmammalian vertebrates, including teleosts. However, information on the distribution of Spx in the brain and its interactions with other neuroendocrine systems in fish is still scarce.
View Article and Find Full Text PDFResults of previous studies provided evidence for the existence of a functional gonadotropin-inhibitory hormone (GnIH) system in the European sea bass, , which exerted an inhibitory action on the brain-pituitary-gonadal axis of this species. Herein, we further elucidated the intracellular signaling pathways mediating in sea bass GnIH actions and the potential interactions with sea bass kisspeptin (Kiss) signaling. Although GnIH1 and GnIH2 had no effect on basal CRE-luc activity, they significantly decreased forskolin-elicited CRE-luc activity in COS-7 cells transfected with their cognate receptor GnIHR.
View Article and Find Full Text PDFThe field of fish gonadotropin-releasing hormones (GnRHs) is also celebrating its 50th anniversary this year. This review provides a chronological history of fish GnRH biology over the past five decades. It demonstrates how discoveries in fish regarding GnRH and GnRH receptor multiplicity, dynamic interactions between GnRH neurons, and additional neuroendocrine factors acting alongside GnRH, amongst others, have driven a paradigm shift in our understanding of GnRH systems and functions in vertebrates, including mammals.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
September 2021
An important bottleneck in fish aquaculture research is the supply and maintenance of embryos, larvae, juvenile and adult specimens. In this context, cell lines represent alternative experimental models for in vitro studies that complement in vivo assays. This allows us to perform easier experimental design and sampling and avoid the sacrifice of animals.
View Article and Find Full Text PDFThe retinas of nonmammalian vertebrates have cone photoreceptor mosaics that are often organized as highly patterned lattice-like distributions. In fishes, the two main lattice-like patterns are composed of double cones and single cones that are either assembled as interdigitized squares or as alternating rows. The functional significance of such orderly patterning is unknown.
View Article and Find Full Text PDFIn the fish retina, rods and cones are responsible for nocturnal vision and colour perception, respectively, and exhibit a repertoire of light-sensitive opsin photopigments that permits the adaptation to different photic environment. The metamorphosis of Senegalese sole determines a migration from pelagic to benthic environments, which is accompanied by essential changes in light intensity and spectrum. In this paper, we analysed the daily expression rhythms of rod opsin and five cone opsins during sole ontogeny in animals maintained under light-dark cycles of white (LDW), blue (LDB), red (LDR) and continuous white (LL) lights.
View Article and Find Full Text PDFFish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions.
View Article and Find Full Text PDFGonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide belonging to the RFamide peptide family that was first discovered in quail by Tsutsui and co-workers in the year 2000. Since then, different GnIH orthologues have been identified in all vertebrate groups, from agnathans to mammals. These GnIH genes synthesize peptide precursors that encompass two to four C-terminal LPXRFamide peptides.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2019
Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior.
View Article and Find Full Text PDFReproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3.
View Article and Find Full Text PDFThis research aimed at investigating the light synchronization and endogenous origin of daily expression rhythms of eight key genes involved in epigenetic mechanisms (DNA methylation and demethylation) in zebrafish gonads. To this end, 84 zebrafish were distributed into six tanks, each one containing 14 fish (7 males and 7 females). Animals were subjected to 12 h light:12 h dark cycles (LD, lights on at ZT0 h) and fed randomly three times a day during the light phase.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
October 2017
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that belongs to the RFamide peptide family and was first identified in the quail brain. From the discovery of avian GnIH, orthologous GnIH peptides have been reported in a variety of vertebrates, including mammals, amphibians, teleosts and agnathans, but also in protochordates. It has been clearly established that GnIH suppresses reproduction in avian and mammalian species through its inhibitory actions on brain GnRH and pituitary gonadotropins.
View Article and Find Full Text PDFRecently, gonadotropin-inhibitory hormone (GnIH) has emerged as an important regulator of reproduction in birds and mammals. This RFamide neuropeptide has neuromodulatory functions and controls the synthesis and/or release of gonadotropin-releasing hormone (GnRH) and gonadotropins. Although teleosts represent about half of all living vertebrates, scientific and technological advances on the Gnih system in fish are scarce, contradictory, and inconclusive.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
May 2017
The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season).
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
April 2017
The role of rearing temperature on fish development, sex differentiation and puberty has been largely addressed, but the impact of water temperature on the ontogeny of the main neuroendocrine systems controlling reproduction has received little attention. Gonadotropin-inhibitory hormone (GnIH) has been shown to act on gonadotropin-releasing hormone (GnRH) neurons and on the pituitary to inhibit gonadotropin release and synthesis in vertebrates, including sea bass, Dicentrarchus labrax. In the present study we investigated the effects of rearing temperature during the thermosensitive period (5-60days post-fertilization, dpf) on the expression of the GnIH gene (gnih) and its receptor (gnihr).
View Article and Find Full Text PDFGonadotropin-inhibitory hormone (GnIH) is a neurohormone that suppresses reproduction by acting at both the brain and pituitary levels. In addition to the brain, GnIH may also be produced in gonads and can regulate steroidogenesis and gametogenesis. However, the function of GnIH in gonadal physiology has received little attention in fish.
View Article and Find Full Text PDFCART (cocaine- and amphetamine-regulated transcript) is a peptide with neurotransmitter and neuroendocrine functions with several key roles, both centrally and peripherally. In mammals there is a single gene that produces two alternatively spliced variants in rat and a single transcript in human but in teleosts multiple genes have been found. In the present study we report the existence of seven transcripts in Senegalese sole and characterize their sequences and phylogenetic relationships, as well as their expression patterns in the brain and peripheral tissues, and in response to feeding.
View Article and Find Full Text PDF