Publications by authors named "Munkonge F"

Inhibition of the PARP superfamily tankyrase enzymes suppresses Wnt/β-catenin signalling in tumour cells. Here, we describe here a novel, drug-like small molecule inhibitor of tankyrase MSC2504877 that inhibits the growth of APC mutant colorectal tumour cells. Parallel siRNA and drug sensitivity screens showed that the clinical CDK4/6 inhibitor palbociclib, causes enhanced sensitivity to MSC2504877.

View Article and Find Full Text PDF

Background: The nuclear membrane of differentiated airway epithelial cells is a significant barrier for nonviral vectors. Trans-cyclohexane-1,2-diol (TCHD) is an amphipathic alcohol that has been shown to collapse nuclear pore cores and allow the uptake of macromolecules that would otherwise be too large for nuclear entry. Previous studies have shown that TCHD can increase lipid-mediated transfection in vitro.

View Article and Find Full Text PDF

Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side.

View Article and Find Full Text PDF

We have assessed whether viscoelastic gels known to inhibit mucociliary clearance can increase lipid-mediated gene transfer. Methylcellulose or carboxymethylcellulose (0.25-1.

View Article and Find Full Text PDF

A clinical program to assess whether lipid GL67A-mediated gene transfer can ameliorate cystic fibrosis (CF) lung disease is currently being undertaken by the UK CF Gene Therapy Consortium. We have evaluated GL67A gene transfer to the murine nasal epithelium of wild-type and CF knockout mice to assess this tissue as a test site for gene transfer agents. The plasmids used were regulated by either (1) the commonly used short-acting cytomegalovirus promoter/enhancer or (2) the ubiquitin C promoter.

View Article and Find Full Text PDF

Import of exogenous plasmid DNA (pDNA) into mammalian cell nuclei represents a key intracellular obstacle to efficient non-viral gene delivery. This includes access of the pDNA to the nuclei of non-dividing cells where the presence of an intact nuclear membrane is limiting for gene transfer. Here we identify, isolate, and characterize, cytoplasmic determinants of pDNA nuclear import into digitonin-permeabilized HeLa cells.

View Article and Find Full Text PDF
Article Synopsis
  • Transfections in labs face challenges in getting DNA into cell nuclei, and understanding these mechanisms can improve gene delivery methods.
  • Researchers are developing plasmid constructs that can enter the nucleus without cell division, enhancing gene expression.
  • Key proteins like importin beta(1) are crucial for this nuclear import process, and discovering these interactions can lead to better gene delivery vectors.
View Article and Find Full Text PDF

Cystic fibrosis (CF) a monogenic lethal disease and, therefore, ideally suited for the development of gene therapy. The first clinical trials were carried out shortly after cloning the CF gene in 1989. Since then, 25 trials have been carried out.

View Article and Find Full Text PDF

Pulmonary delivery of plasmid DNA (pDNA)/cationic liposome complexes is associated with an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response and brief duration of transgene expression. We demonstrate that retention of even a single CpG in pDNA is sufficient to elicit an inflammatory response, whereas CpG-free pDNA vectors do not. Using a CpG-free pDNA expression vector, we achieved sustained (>or=56 d) in vivo transgene expression in the absence of lung inflammation.

View Article and Find Full Text PDF

Gene therapy is being investigated in the treatment of lung-related aspects of the genetic disease, Cystic fibrosis (CF). Clinical studies have demonstrated CF transmembrane conductance regulator (CFTR) expression in the airways of adults with CF using a variety of gene transfer agents. In utero gene therapy is an alternative approach that facilitates vector transduction of rapidly expanding populations of target cells while avoiding immune recognition of the vector.

View Article and Find Full Text PDF

Sendai virus (SeV) vector has been shown to efficiently transduce airway epithelial cells. As a precursor to the potential use of this vector for cystic fibrosis (CF) gene therapy, the correct maturation of the SeV vector-derived CF transmembrane conductance regulator (CFTR) protein was examined using biochemical and functional analyses. We constructed a recombinant SeV vector, based on the fusion (F) gene-deleted non-transmissible SeV vector, carrying the GFP-CFTR gene in which the N terminus of CFTR was fused to green fluorescence protein (GFP).

View Article and Find Full Text PDF

The potential for gene therapy to be an effective treatment for cystic fibrosis has been hampered by the limited gene transfer efficiency of current vectors. We have shown that recombinant Sendai virus (SeV) is highly efficient in mediating gene transfer to differentiated airway epithelial cells, because of its capacity to overcome the intra- and extracellular barriers known to limit gene delivery. Here, we have identified a novel method to allow the cystic fibrosis transmembrane conductance regulator (CFTR) cDNA sequence to be inserted within SeV (SeV-CFTR).

View Article and Find Full Text PDF

Systemic sclerosis (SSc) is a connective tissue disease of unknown aetiology characterized by fibrosis of the skin and internal organs, vascular abnormalities and humoral autoimmunity. Strong T-cell-dependent autoantibody and HLA associations are found in SSc subsets. The co-stimulatory molecule, CD86, expressed by antigen-presenting cells, plays a crucial role in priming naïve lymphocytes.

View Article and Find Full Text PDF
Article Synopsis
  • A new method has been developed to attach fluorescent markers (fluorochromes) specifically to supercoiled plasmid DNA (pDNA), which is crucial for tracking pDNA in cells without disrupting gene expression.
  • This method uses peptide nucleic acid (PNA) as a linker, connecting the fluorochrome to pDNA by covalently reacting a part of the PNA with the fluorochrome, enabling visualization through fluorescence.
  • Experiments demonstrated that the conjugate successfully entered cell nuclei and retained a significant level of its original gene expression activity, making it a valuable tool for studies on gene transfer and DNA tracking in live cells.
View Article and Find Full Text PDF

To evaluate the potential of clinically used phosphorylcholine (PC)-coated stents for their ability to load and release small decoy oligonucleotides (ODNs). Stents were loaded with 41 +/- 6 microg ODNs. Ex vivo deployment of ODN-loaded stents in explanted rabbit aortas showed significant vascular ODN transfer, with 18 +/- 12% of intimal or medial cell nuclei containing ODNs.

View Article and Find Full Text PDF

Aims: Therapeutic angiogenesis is a potential new treatment for patients unsuitable for conventional revascularization strategies. We investigated angiogenesis via a 'master switch gene' hypoxia inducible factor (HIF-1alpha).

Methods And Results: Ameroid occluders were placed around the left circumflex coronary artery of 74 pigs.

View Article and Find Full Text PDF

The use of the halide-sensitive fluorescent probes (6-methoxy-N-(-sulphopropyl)quinolinium (SPQ) and N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE)) to measure chloride transport in cells has now been established as an alternative to the halide-selective electrode technique, radioisotope efflux assays and patch-clamp electrophysiology. We report here procedures for the assessment of halide efflux, using SPQ/MQAE halide-sensitive fluorescent indicators, from both adherent cultured epithelial cells and freshly obtained primary human airway epithelial cells. The procedure describes the calculation of efflux rate constants using experimentally derived SPQ/MQAE fluorescence intensities and empirically derived Stern-Volmer calibration constants.

View Article and Find Full Text PDF

The signal-mediated import of plasmid DNA (pDNA) into nondividing mammalian cell nuclei is one of the key biological obstacles to nonviral therapeutic pDNA delivery. Overcoming this barrier to pDNA transfer is thus an important fundamental objective in gene therapy. Here, we outline the rationale behind current and future strategies for signal-mediated pDNA nuclear import.

View Article and Find Full Text PDF

Resolution of pulmonary oedema is mediated by active absorption of liquid across the alveolar epithelium. A key component of this process is the sodium-potassium ATPase (Na+K+-ATPase) enzyme located on the basolateral surface of epithelial cells and up-regulated during oedema resolution. We hypothesised that lung liquid clearance could be further up-regulated by lipid-mediated transfer and expression of exogenous Na+K+-ATPase cDNA.

View Article and Find Full Text PDF

Much of the morbidity and mortality seen in cystic fibrosis (CF) is related to chronic infection of the respiratory tract with Pseudomonas aeruginosa. Some studies have attributed the strong relationship between CF and Pseudomonas colonization to the presence of increased numbers of specific cell-surface receptors, although other work suggests that this relates to the presence of mucus. Several groups are now assessing the use of gene transfer as a novel form of treatment for CF.

View Article and Find Full Text PDF

A number of recent observations suggest a link between airway Cl-transport and asthma. We have previously described the properties of a voltage- and Ca2+ -dependent chloride channel present in airway epithelium. We now show that agents able to prevent indirectly induced bronchoconstriction (sodium cromoglycate, nedocromil sodium, and furosemide) reduce either the single-channel conductance or the open probability of this channel.

View Article and Find Full Text PDF

Functional assessment of the efficacy of CFTR gene transfer protocols in humans has previously involved measurement of in vivo potential difference. We have studied whether freshly obtained airway epithelial cells may provide suitable tissue for studies of in vivo gene transfer using fluorescent digital imaging microscopy. Nasal epithelial cells from non-cystic fibrosis subjects (n = 6) and from cystic fibrosis (CF) patients (delta F508: delta F508, n = 5) were obtained by brushing and loaded with 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ).

View Article and Find Full Text PDF

Phase one clinical trials for gene therapy of cystic fibrosis are in progress using either liposomes or adenoviral vectors for CFTR gene transfer to epithelial cells in the airways. In addition to electrophysiological measurements, expression of vector CFTR is usually assessed by RT-PCR. We have developed a CFTR-expression vector, pCFAS, that simplifies the distinction of transgene-derived CFTR mRNA from endogenous mRNA.

View Article and Find Full Text PDF

Two important issues that can be addressed by animal models are disease pathogenesis and the testing of new treatments, including gene therapy. How closely these models mimic the relevant disorder in humans will determine their usefulness. This study examines how closely the characteristic bioelectric features of cystic fibrosis (CF) are reproduced in the airways and intestinal tract of the exon 10 insertional mutant mouse (cf/cf).

View Article and Find Full Text PDF

The effect of osmotic stress on Cl- permeability in human squamous lung carcinoma epithelial (S1) cells was investigated using a macroscopic 125I efflux assay. Hypotonic challenge of monolayers led to a significant (P < 0.01) dose-related increase in efflux from pre-loaded cells, returning to pre-activation rates within 10 min.

View Article and Find Full Text PDF