Publications by authors named "Munkh-Uchral Erdenebat"

We propose a high-quality, three-dimensional display system based on a simplified light field image acquisition method, and a custom-trained full-connected deep neural network is proposed. The ultimate goal of the proposed system is to acquire and reconstruct the light field images with possibly the most elevated quality from the real-world objects in a general environment. A simplified light field image acquisition method acquires the three-dimensional information of natural objects in a simple way, with high-resolution/high-quality like multicamera-based methods.

View Article and Find Full Text PDF

We propose a light-field microscopy display system that provides improved image quality and realistic three-dimensional (3D) measurement information. Our approach acquires both high-resolution two-dimensional (2D) and light-field images of the specimen sequentially. We put forward a matting Laplacian-based depth estimation algorithm to obtain nearly realistic 3D surface data, allowing the calculation of depth data, which is relatively close to the actual surface, and measurement information from the light-field images of specimens.

View Article and Find Full Text PDF

Fresnel incoherent correlation holography (FINCH) was a milestone in incoherent holography. In this roadmap, two pathways, namely the development of FINCH and applications of FINCH explored by many prominent research groups, are discussed. The current state-of-the-art FINCH technology, challenges, and future perspectives of FINCH technology as recognized by a diverse group of researchers contributing to different facets of research in FINCH have been presented.

View Article and Find Full Text PDF

We propose and implement a high-quality three-dimensional (3D) display system for an integral imaging microscope using a simplified direction-inversed computation method based on user interaction. A model of the specimen is generated from the estimated depth information (via the convolutional neural network-based algorithm), the quality of the model is defined by the high-resolution two-dimensional image. The new elemental image arrays are generated from the models via a simplified direction-inversed computation method according to the user interaction and directly displayed on the display device.

View Article and Find Full Text PDF

It is difficult to find the micromirror array with desired specifications for augmented-reality displays, and the custom fabricating methods are complicated and unstable. We propose a novel, to our knowledge, three-dimensional see-through augmented-reality display system using the holographic micromirror array. Unlike the conventional holographic waveguide-type augmented-reality displays, the proposed system utilizes the holographic micromirror array as an in-coupler, without any additional elements.

View Article and Find Full Text PDF

Holographic stereogram (HS) printing requires extensive memory capacity and long computation time during perspective acquisition and implementation of the pixel re-arrangement algorithm. Hogels contain very weak depth information of the object. We propose a HS printing system that uses simplified digital content generation based on the inverse-directed propagation (IDP) algorithm for hogel generation.

View Article and Find Full Text PDF

The integral imaging microscopy system provides a three-dimensional visualization of a microscopic object. However, it has a low-resolution problem due to the fundamental limitation of the F-number (the aperture stops) by using micro lens array (MLA) and a poor illumination environment. In this paper, a generative adversarial network (GAN)-based super-resolution algorithm is proposed to enhance the resolution where the directional view image is directly fed as input.

View Article and Find Full Text PDF

In this paper, a depth-related uniform multiple wavefront recording plane (UM-WRP) method is proposed for enhancing the image quality of point cloud-based holograms. Conventional multiple WRP methods, based on full-color computer-generated holograms, experience a color uniformity problem caused by intensity distributions. To solve this problem, the proposed method generates depth-related WRPs to enhance color uniformity, thereby accelerating hologram generation using a uniform active area.

View Article and Find Full Text PDF

A multiple-camera holographic system using non-uniformly sampled 2D images and compressed point cloud gridding (C-PCG) is suggested. High-quality, digital single-lens reflex cameras are used to acquire the depth and color information from real scenes; these are then virtually reconstructed by the uniform point cloud using a non-uniform sampling method. The C-PCG method is proposed to generate efficient depth grids by classifying groups of object points with the same depth values in the red, green, and blue channels.

View Article and Find Full Text PDF

We present an electrically controllable fast-switching virtual-moving microlens array (MLA) consisting of a stacked structure of two polarization-dependent microlens arrays (PDMLAs) with optical orthogonality, where the position of the two stacked PDMLAs is shifted by half the elemental pitch in the diagonal direction. By controlling the polarization of the incident light without the physical movement of the molecules comprising the virtual-moving MLA, the periodic sampling position of the MLA can be switched fast using a polarization-switching layer based on a fast-switching liquid crystal cell. Using the fast-switching virtual-moving MLA, the spatial-resolution-enhanced light-field (LF) imaging system was demonstrated without a decrease in the angular sampling resolution as compared to the conventional LF imaging system comprising a passive MLA; two sets of elemental image arrays were captured quickly owing to the short switching time of the virtual-moving MLA of 450 μs.

View Article and Find Full Text PDF

Recently, computer-generated holograms (CGHs) of real three-dimensional (3D) objects have become widely used to support holographic displays. Here, a multiple-camera holographic system featuring an efficient depth grid is developed to provide the correct depth cue. Multidepth cameras are used to acquire depth and color information from real scenes, and then to virtually reconstruct point cloud models.

View Article and Find Full Text PDF

A novel directional-view image scaling method that corrects chromatic dispersion and enhances the quality of three-dimensional (3D) images reconstructed by a full-color holographic display system is proposed. When the 3D information of the real scene is acquired through the integral imaging pickup method, the orthographic projection image is reconstructed. Then, each directional-view image is separated and synthesized onto the computer-generated hologram.

View Article and Find Full Text PDF

The calculation of realistic full-color holographic displays is hindered by the high computational cost. Previously, we suggested a point cloud gridding (PCG) method to calculate monochrome holograms of real objects. In this research, a relocated point cloud gridding (R-PCG) method is proposed to enhance the reconstruction quality and accelerate the calculation speed in GPU for a full-color holographic system.

View Article and Find Full Text PDF

In this paper, we present an algorithm for complex object wave extraction in off-axis digital holography using a time-multiplexing and frequency spectrum-shifting technique. The proposed approach utilizes the digital time-multiplexing technique, in which two 90-deg-rotated off-axis holograms are recorded in sequence, and corresponding spectra are subtracted in the computed Fourier domain to eliminate the DC term. Then, the two subtracted holograms are digitally multiplexed into one complex hologram in the same plane, and by shifting the spatial frequency spectra of the subtracted hologram in the spatial frequency domain, one of the two cross-correlations can be obtained in the center.

View Article and Find Full Text PDF

An integral imaging microscopy (IIM) system with improved depth-of-field (DoF) using a custom-designed bifocal polarization-dependent liquid-crystalline polymer micro lens array (LCP-MLA) is proposed. The implemented MLA has improved electro-optical properties such as a small focal ratio, high fill factor, low driving voltage, and fast switching speed, utilizing a well-aligned reactive mesogen on the imprinted reverse shape of the lens and a polarization switching layer. A bifocal MLA switches its focal length according to the polarization angle and acquires different DoF information of the specimen.

View Article and Find Full Text PDF

A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods.

View Article and Find Full Text PDF

We propose and implement an integral imaging microscope with extended depth-of-field (DoF) using a bifocal holographic micro lens array (MLA). The properties of the two MLAs are switched via peristrophic multiplexing, where different properties of the MLA are recorded onto the single holographic optical element (HOE). The recorded MLA properties are perpendicular to each other: after the first mode is recorded, the HOE is rotated by 90° clockwise, and the second mode is recorded.

View Article and Find Full Text PDF

In this paper, we describe a three-dimensional visualization system for ophthalmic microscopes that is aimed at microsurgery without the eyepieces. A three-dimensional visualization system for ophthalmic microscopes using the mixed illumination, which consists of visible light and near-infrared illumination, is established in order to acquire more exact information of object and reduce the amount of light irradiated to the patients, and its usage in microsurgery without eyepieces is herein described. A custom-designed stereoscopic three-dimensional display which is manufactured for the convenience of the surgeons during the long-time surgery, is connected directly to the camera of the ophthalmic microscope in order to eliminate the discomfort of eyepieces to the surgeon and signal delay between the camera, mounted on the microscope, and display device for surgeon.

View Article and Find Full Text PDF

We produced an adaptive lens array composed of multiple flat lens arrays arranged in a curved shape with an adjustable radius of curvature, in order to overcome the hardware problem of the conventional flat or curved lens array-based systems. The manufactured adaptive lens array is applied to an integral imaging system. The gap mismatch that occurs when using a curved lens array is resolved by computing the exact display mapping position of element images through each lens.

View Article and Find Full Text PDF

A depth-of-field enhancement method for integral imaging microscopy system using a spatial multiplexing structure consisting of a beamsplitter with dual video channels and micro lens arrays is proposed. A computational integral imaging reconstruction algorithm generates two sets of depth-sliced images for the acquired depth information of the captured elemental image arrays and the well-focused depth-slices of both image sets are combined where each is focused on a different depth plane of the specimen. A prototype is implemented, and the experimental results demonstrate that the depth-of-field of the reconstructed images in the proposed integral imaging microscopy is significantly increased compared with conventional integral imaging microscopy systems.

View Article and Find Full Text PDF

Due to the limitations of micro lens arrays and camera sensors, images on display devices through the integral imaging microscope systems have been suffering for a low-resolution. In this paper, a resolution-enhanced orthographic-view image display method for integral imaging microscopy is proposed and demonstrated. Iterative intermediate-view reconstructions are performed based on bilinear interpolation using neighborhood elemental image information, and a graphics processing unit parallel processing algorithm is applied for fast image processing.

View Article and Find Full Text PDF

A real-time interactive orthographic-view image display of integral imaging (II) microscopy that includes the generation of intermediate-view elemental images (IVEIs) for resolution enhancement is proposed. Unlike the conventional II microscopes, parallel processing through a graphics processing unit is required for real-time display that generates the IVEIs and interactive orthographic-view images in high speed, according to the user interactive input. The real-time directional-view display for the specimen for which 3D information is acquired through II microscopy is successfully demonstrated by using resolution-enhanced elemental image arrays.

View Article and Find Full Text PDF

We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror.

View Article and Find Full Text PDF

This paper proposes an open computer language (OpenCL) parallel processing method to generate the elemental image arrays (EIAs) for hexagonal lens array from a three-dimensional (3D) object such as a volume data. Hexagonal lens array has a higher fill factor compared to the rectangular lens array case; however, each pixel of an elemental image should be determined to belong to the single hexagonal lens. Therefore, generation for the entire EIA requires very large computations.

View Article and Find Full Text PDF

In an integral imaging display, the computer-generated integral imaging method has been widely used to create the elemental images from a given three-dimensional object data. Long processing time, however, has been problematic especially when the three-dimensional object data set or the number of the elemental lenses are large. In this paper, we propose an image space parallel processing method, which is implemented by using Open Computer Language (OpenCL) for rapid generation of the elemental images sets from large three-dimensional volume data.

View Article and Find Full Text PDF