In virtual drug screening, consensus docking is a standard in-silico approach consisting of a combined result from optimized docking experiments, a minimum of two results combination. Therefore, consensus docking is subjected to a lower success rate than the best docking method due to its mathematical nature, an unavoidable limitation. This study aims to overcome this drawback via random forest, an ensemble machine learning model.
View Article and Find Full Text PDFEnzymes capable of processing a variety of compounds enable plants to adapt to diverse environmental conditions. PRISEs (progesterone-5β-reductase/iridoid synthase-like enzymes), examples of such substrate-promiscuous enzymes, are involved in iridoid and cardenolide pathways and demonstrate notable substrate promiscuity by reducing the activated C=C double bonds of plant-borne and exogenous 1,4-enones. In this study, we identified PRISE genes in () and (), and the corresponding enzymes were determined to share a sequence identity of 95%.
View Article and Find Full Text PDF3β-hydroxy-Δ5-steroid dehydrogenases (3βHSDs) are supposed to be involved in -cardenolide biosynthesis. Here, a novel () was isolated from shoot cultures and expressed in . Recombinant 3βHSD1 and 3βHSD2 shared 70% amino acid identity, reduced various 3-oxopregnanes and oxidised 3-hydroxypregnanes, but only 3βHSD2 converted small ketones and secondary alcohols efficiently.
View Article and Find Full Text PDFThere is growing interest in exploring Digitalis cardenolides as potential antiviral agents. Hence, we herein investigated the influence of structural features and lipophilicity on the antiherpes activity of 65 natural and semisynthetic cardenolides assayed in vitro against HSV-1. The presence of an α,β-unsaturated lactone ring at C-17, a β-hydroxy group at C-14 and C-3β-OR substituents were considered essential requirements for this biological activity.
View Article and Find Full Text PDFSmall or specialized natural products (SNAPs) produced by plants vary greatly in structure and function, leading to selective advantages during evolution. With a limited number of genes available, a high promiscuity of the enzymes involved allows the generation of a broad range of SNAPs in complex metabolic networks. Comparative metabolic studies may help to understand why-or why not-certain SNAPs are produced in plants.
View Article and Find Full Text PDFStudying RNAi-mediated DlP5βR1 and DlP5βR2 knockdown shoot culture lines of Digitalis lanata, we here provide direct evidence for the participation of PRISEs (progesterone 5β-reductase/iridoid synthase-like enzymes) in 5β-cardenolide formation. Progesterone 5β-reductases (P5βR) are assumed to catalyze the reduction of progesterone to 5β-pregnane-3,20-dione, which is a crucial step in the biosynthesis of the 5β-cardenolides. P5βRs are encoded by VEP1-like genes occurring ubiquitously in embryophytes.
View Article and Find Full Text PDFThree putative 21-hydroxypregnane 21-O-malonyltransferases (21MaT) from Digitalis lanata were partially purified. Two of them were supposed to be BAHD-type enzymes. We were unable to purify them in quantities necessary for reliable sequencing.
View Article and Find Full Text PDFCardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na,K ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells.
View Article and Find Full Text PDFInfluenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs.
View Article and Find Full Text PDFHuman herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias.
View Article and Find Full Text PDFCardiac glycosides (CGs) are natural compounds traditionally used for the treatment of heart disorders, and recently new therapeutic possibilities were proposed. Their antitumor reports and clinical trials have notably enhanced, including those targeted for lung cancer, the most lethal type that lacks of new treatment agents, instigating the research of these molecules. The CGs studied here, named C10 {3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin} and C18 (3β-(aminoacetyl)amino-3-deoxydigitoxigenin), are semisynthetic derivatives prepared from digitoxigenin scaffold.
View Article and Find Full Text PDFIn recent years, cardiac glycosides (CGs) have been investigated as potential antiviral and anticancer drugs. Digitoxigenin (DIG) and other CGs have been shown to bind and inhibit Na/K-adenosinetriphosphatase (ATPase). Tumor cells show a higher expression rate of the Na/K-ATPase protein or a stronger affinity towards the binding of CGs and are therefore more prone to CGs than non-tumor cells.
View Article and Find Full Text PDFA yeast expression plasmid was constructed containing a cardenolide biosynthetic module, referred to as CARD II, using the AssemblX toolkit, which enables the assembly of large DNA constructs. The genes cloned into the vector were (a) a Δ -3β-hydroxysteroid dehydrogenase gene from Digitalis lanata, (b) a steroid Δ -isomerase gene from Comamonas testosteronii, (c) a mutated steroid-5β-reductase gene from Arabidopsis thaliana, and (d) a steroid 21-hydroxylase gene from Mus musculus. A second plasmid bearing an ADR/ADX fusion gene from Bos taurus was also constructed.
View Article and Find Full Text PDFIn recent years, new therapeutic possibilities were proposed for cardiac glycosides traditionally used to treat heart diseases, such as anticancer and antiviral activities. In this sense, this work aimed to synthesize the readily accessible 3β-azido-3-deoxydigitoxigenin (5) from digitoxigenin (1). Two new series of compounds were obtained from derivative (5): (i) O-glycosyl trizols through click chemistry with propargyl glycosides; and (ii) compounds substituted in the alpha carbonyl position with different residues linked via an amino-group.
View Article and Find Full Text PDFThe amazing variability of plant metabolism and its rapid divergence during evolution pose fundamental questions as to the driving forces, mechanisms, and players in metabolic differentiation. This review examines concepts that help us understand adaptive pathway evolution, with a particular emphasis on plant specialized metabolism, previously often termed secondary metabolism. Following a general introduction to pathway and metabolite evolution, the focus is directed to enzyme promiscuity and its classification.
View Article and Find Full Text PDFCancer is an important public health problem, being one of the leading causes of death worldwide. Most antineoplastic agents cause severe toxic effects and some types of cancer do not respond or are resistant to the existing pharmacotherapy, necessitating the research and development of new therapeutic strategies. Cardenolides have shown significant antitumor activity due to their ability to inhibit the NaKATPase enzyme, and the expression of this enzyme is increased in tumor cells.
View Article and Find Full Text PDFPRISEs (progesterone 5β-reductase and/or iridoid synthase-like 1,4-enone reductases) are involved in cardenolide and iridoid biosynthesis. We here investigated a PRISE (rAtSt5βR) from Arabidopsis thaliana, a plant producing neither cardenolides nor iridoids. The structure of rAtSt5βR was elucidated with X-ray crystallography and compared to the known structures of PRISEs from Catharanthus roseus (rCrISY) and Digitalis lanata (rDlP5βR).
View Article and Find Full Text PDFBiomed Pharmacother
November 2018
Cardiac glycosides (CGs) are natural compounds used to treat congestive heart failure. They have garnered attention as a potential cancer treatment option, especially because they bind to Na/K-ATPase as a target and activate intracellular signaling pathways leading to a variety of cellular responses. In this study we evaluated AMANTADIG, a semisynthetic cardenolide derivative, for its cytotoxic activity in two human androgen-insensitive prostate carcinoma cell lines, and the potential synergistic effects with docetaxel.
View Article and Find Full Text PDFCardiac glycosides (CGs) are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV) out of 46 CGs for its low nanomolar anti-lung cancer activity.
View Article and Find Full Text PDFCardiac glycosides (CGs) are natural compounds widely used to treat several cardiac conditions and more recently have been recognized as potential antitumor agents. They are known as Na,K-ATPases ligands, which is a promising drug target in cancer. In this study, the short and long-lasting cytotoxic effects of the natural cardenolide digitoxigenin monodigitoxoside (DGX) were evaluated against two non-small cell lung cancer lines (A549 and H460 cells).
View Article and Find Full Text PDFRecent studies demonstrate that cardiac glycosides, known to inhibit Na/K-ATPase in humans, have increased susceptibility to cancer cells that can be used in tumor therapy. One of the most promising candidates identified so far is glucoevatromonoside, which can be isolated from the endangered species ssp. .
View Article and Find Full Text PDFCardiac glycosides are well known in the treatment of cardiovascular diseases; however, their application as treatment option for cancer patients is under discussion. We showed that the cardiac glycoside digitoxin and its analog AMANTADIG can inhibit the growth of renal cell carcinoma (RCC) cell lines and increase G2/M cell cycle arrest. To identify the signaling pathways and molecular basis of this G2/M arrest, microRNAs were profiled using microRNA arrays.
View Article and Find Full Text PDFA steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate.
View Article and Find Full Text PDF