Publications by authors named "Muniyappa K"

Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.

View Article and Find Full Text PDF

In , RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies indicate that the Shieldin complex in human cancer cells promotes non-homologous end-joining (NHEJ) for DNA repair while inhibiting homologous recombination (HR).
  • Notably, many eukaryotic species lack certain components of this complex, prompting exploration of alternative mechanisms used by Rev7 for regulating DNA double-strand break repair choices.
  • Research findings show that Rev7 interacts with Mre11-Rad50-Xrs2 (MRX) components, inhibits their activities, and enhances NHEJ while preventing HR, revealing new insights into how Rev7 influences DNA repair pathways.
View Article and Find Full Text PDF

In eubacteria, Holliday junction (HJ) resolvases (HJRs) are crucial for faithful segregation of newly replicated chromosomes, homologous recombination, and repair of stalled/collapsed DNA replication forks. However, compared with the Escherichia coli HJRs, little is known about their orthologs in mycobacterial species. A genome-wide analysis of Mycobacterium smegmatis identified two genes encoding putative HJRs, namely RuvC (MsRuvC) and RuvX (MsRuvX); but whether they play redundant, overlapping, or distinct roles remains unknown.

View Article and Find Full Text PDF

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp.

View Article and Find Full Text PDF

Peptides are very interesting biomolecules that upon self-association form a variety of thermodynamically stable supramolecular structures of nanometric dimension nanotubes, nanorods, nanovesicles, nanofibrils, nanowires and many others. Herein, we report six peptide molecules having a general chemical structure, H-Gaba-X-X-OH (Gaba: γ-aminobutyric acid, X: amino acid). Out of these six peptides, three are aromatic and the others are aliphatic.

View Article and Find Full Text PDF

In all cells-from bacteria to humans-nucleotide excision repair (NER) is a highly conserved, versatile DNA repair pathway that is responsible for the removal of a wide variety of DNA helix-distorting lesions arising from both endogenous and exogenous sources. In many organisms including bacteria, fungi, animals, and plants, NER occurs through two sub-pathways: the global genome NER (GG-NER) pathway and the transcription- coupled NER (TC-NER) pathway. Although essential factors and basic steps involved in NER have been identified, mechanisms and stages of their assembly process are not well understood.

View Article and Find Full Text PDF

Saccharomyces cerevisiae Pso2/SNM1 is essential for DNA interstrand crosslink (ICL) repair; however, its mechanism of action remains incompletely understood. While recent work has revealed that Pso2/Snm1 is dual-localized in the nucleus and mitochondria, it remains unclear whether cell-intrinsic and -extrinsic factors regulate its subcellular localization and function. Herein, we show that Pso2 undergoes ubiquitination and phosphorylation, but not SUMOylation, in unstressed cells.

View Article and Find Full Text PDF

Xanthone is an important scaffold for various medicinally relevant compounds. However, it has received scant attention in the design of agents that are cytotoxic to cancer cells via targeting the stabilization of G-quadruplex (G4) nucleic acids. Specific G4 DNA recognition against double-stranded (ds) DNA is receiving epoch-making interest for the development of G4-mediated anticancer agents.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression.

View Article and Find Full Text PDF

We have examined the stabilization of higher-order noncanonical G-quadruplex (G4) DNA structures formed by the G-rich sequences in the promoter region of oncogenes such as c-MYC, c-KIT, VEGF and BCl2 by newly synthesized, novel nitrogen-containing aromatics conjugated to xanthone moiety. Compounds with N-heterocyclic substituents such as pyridine (XNiso), benzimidazole (XBIm), quinoxaline (XQX) and fluorophore dansyl (XDan) showed greater effectiveness in stabilizing the G4 DNA as well as selective cytotoxicity for cancer cells (mainly A549) over normal cells both in terms of UV-Vis spectral titrations and cytotoxicity assay. Both fluorescence spectral titrimetric measurements and circular dichroism (CD) melting experiments further substantiated the G4 stabilization phenomenon by these small-molecular ligands.

View Article and Find Full Text PDF

Anthraquinone-based compounds are well-known as duplex DNA as well as G-quadruplex DNA binders. Implications of various anthraquinone derivatives for specific recognition of G-quadruplex DNA over duplex DNA is a 'challenging' research work that requires adequate experience with molecular design. To address this important issue, we designed and synthesized ten new 2,6-disubstituted anthraquinone-based derivatives with different functionalized piperazinyl side-chains.

View Article and Find Full Text PDF

Although it is relatively unexplored, accumulating data highlight the importance of tripartite crosstalk between nucleotide excision repair (NER), DNA replication, and recombination in the maintenance of genome stability; however, elucidating the underlying mechanisms remains challenging. While Escherichia coli uvrA and uvrB can fully complement polAΔ cells in DNA replication, uvrC attenuates this alternative DNA replication pathway, but the exact mechanism by which uvrC suppresses DNA replication is unknown. Furthermore, the identity of bona fide canonical and non-canonical substrates for UvrCs are undefined.

View Article and Find Full Text PDF

Repair of DNA interstrand crosslinks involves a functional interplay among different DNA surveillance and repair pathways. Previous work has shown that interstrand crosslink-inducing agents cause damage to Saccharomyces cerevisiae nuclear and mitochondrial DNA, and its pso2/snm1 mutants exhibit a petite phenotype followed by loss of mitochondrial DNA integrity and copy number. Complex as it is, the cause and underlying molecular mechanisms remains elusive.

View Article and Find Full Text PDF

Much of our understanding of the homologous recombination (HR) machinery hinges on studies using Escherichia coli as a model organism. Interestingly enough, studies on the HR machinery in different bacterial species casts doubt on the universality of the E. coli paradigm.

View Article and Find Full Text PDF

The canonical Wnt/β-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11-Rad50-Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. However, it remains unclear whether a connection exists between Wnt/β-catenin signalling and the MRN complex in the repair of cisplatin-induced DNA interstrand cross-links (ICLs).

View Article and Find Full Text PDF

Telomerase, a reverse transcriptase enzyme, is found to over express in most cancer cells. It elongates the telomere region by repeated adding of TTAGGG in the 3'-end and leads to excess cell proliferation which causes cancer. G-quadruplex (G4) formation can inhibit such telomere lengthening.

View Article and Find Full Text PDF

To ensure genome stability, bacteria have evolved a network of DNA repair mechanisms; among them, the UvrABC-dependent nucleotide excision repair (NER) pathway is essential for the incision of a variety of bulky adducts generated by exogenous chemicals, UV radiation and by-products of cellular metabolism. However, very little is known about the enzymatic properties of Mycobacterium tuberculosis UvrABC excinuclease complex. Furthermore, the biochemical properties of Escherichia coli UvrC (EcUvrC) are not well understood (compared to UvrA and UvrB), perhaps due to its limited availability and/or activity instability in vitro.

View Article and Find Full Text PDF

The members of the RecX family of proteins have a unique capacity to regulate the catalytic activities of RecA/Rad51 proteins in both prokaryotic and eukaryotic organisms. However, our understanding of the functional roles of RecX in pathogenic and non-pathogenic mycobacteria has been limited by insufficient knowledge of the molecular mechanisms of its activity and regulation. Moreover, the significance of a unique 14 amino acid N-terminal extension in Mycobacterium smegmatis RecX (MsRecX) to its function remains unknown.

View Article and Find Full Text PDF

We have designed and synthesized anthraquinone containing compounds which have oligopyrrole side chains of varying lengths. These compounds stabilized the G-quadruplex DNA formed in the promoter regions of c-MYC oncogenes selectively over the duplex DNA. These observations were recorded using UV-vis spectroscopic titrations, fluorescence measurements and circular dichroism (CD) spectral titrations.

View Article and Find Full Text PDF

The G-quadruplex (GQ) motifs have recently been gaining prominence because of their role as gene cis-regulatory elements in a variety of organisms and as potential druggable targets for anti-cancer therapy and ageing. Several studies have demonstrated the existence of GQs in the genomes of emerging and re-emerging human pathogens, such as hepatitis virus, herpesviruses, Ebola virus, Zika virus and Nipah virus. Human Adenovirus (HAdV) exhibits a large number of clinical manifestations especially infecting the children and the immunocompromised patients.

View Article and Find Full Text PDF

The G-quadruplex (GQ) motifs are considered as potential drug-target sites for several human pathogenic viruses such as Zika, Hepatitis, Ebola, and Human Herpesviruses. The recent outbreaks of Nipah virus (NiV) in India, the highly fatal emerging zoonotic virus is a potential threat to global health security as no anti-viral drug or vaccine in currently available. Therefore, here in the present study, we sought to assess the ability of the putative G-quadruplex forming sequences in the NiV genome to form G-quadruplex structures and act as targets for anti-viral compounds.

View Article and Find Full Text PDF

The UvrB subunit is a central component of the UvrABC incision complex and plays a pivotal role in damage recognition, strand excision and repair synthesis. A conserved structural motif (the SxSx motif) present in UvrB is analogous to a similar motif (TxGx) in the helicases of superfamily 2, whose function is not fully understood. To elucidate the significance of the SxSx (Ser143-Val144-Ser145-Cys146) motif in Mycobacterium tuberculosis UvrB (MtUvrB), different variants of MtUvrB subunit were constructed and characterized.

View Article and Find Full Text PDF

The UvrABC excinuclease plays a vital role in bacterial nucleotide excision repair. While UvrA and UvrB subunits associate to form a UvrA B complex, interaction between UvrA and UvrC has not been demonstrated or quantified in any bacterial species. Here, using Mycobacterium tuberculosis UvrA (MtUvrA), UvrB (MtUvrB) and UvrC (MtUvrC) subunits, we show that MtUvrA binds to MtUvrB and equally well to MtUvrC with submicromolar affinity.

View Article and Find Full Text PDF

The RecX protein has attracted considerable interest because the recX mutants exhibit multiple phenotypes associated with RecA functions. To further our understanding of the functional relationship between recA and recX, the effect of different stress treatments on their expression profiles, cell yield and viability were investigated. A significant correlation was found between the expression of Mycobacterium smegmatis recA and recX genes at different stages of growth, and in response to different stress treatments albeit recX exhibiting lower transcript and protein abundance at the mid-log and stationary phases of the bacterial growth cycle.

View Article and Find Full Text PDF