Toxic metal(loid)s, e.g., mercury, arsenic, lead, and cadmium are known for several environmental disturbances creating toxicity to humans if accumulated in high quantities.
View Article and Find Full Text PDFNanomaterials (NMs) have proven to be a game-changer in agriculture, showcasing their potential to boost plant growth and safeguarding crops. The agricultural sector has widely adopted NMs, benefiting from their small size, high surface area, and optical properties to augment crop productivity and provide protection against various stressors. This is attributed to their unique characteristics, contributing to their widespread use in agriculture.
View Article and Find Full Text PDFThe current study was designed to investigate the consequences of rice cooking and soaking of cooked rice (CR) with or without arsenic (As) contaminated water on As and Fe (iron) transfer to the human body along with associated health risk assessment using additive main-effects and multiplicative interaction (AMMI) and Monte Carlo Simulation model. In comparison to raw rice, As content in cooked rice (CR) and soaked cooked rice (SCR) enhanced significantly (at p < 0.05 level), regardless of rice cultivars and locations (at < level) due to the use of As-rich water for cooking and soaking purposes.
View Article and Find Full Text PDFAgricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective.
View Article and Find Full Text PDFArsenic (As) contamination in paddy soils and its further translocation to the rice is a serious global issue. Arsenic loading to the rice depends on soil physico-chemical parameters and agronomic practices. To minimize this natural threat, as a natural substance, rice straw was used to produce rice biochar (RBC) and doped with iron oxide (IO) nanoparticles, another eco-friendly composite.
View Article and Find Full Text PDFThe present study analysed the levels of potentially toxic elements along with physico-chemical properties of agricultural soil samples (n = 59) collected from fields situated along the path of river Ganga in the middle Gangetic floodplain in two districts, Ballia and Ghazipur. Arsenic (As), chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), lead (Pb), iron (Fe) and manganese (Mn) levels were analysed by Wavelength Dispersive-X-Ray Fluorescence Spectroscopy (WD-XRF) and the associated health risks along with diverse indices were calculated. The mean concentrations of As, Cu, Cr, Pb, Zn and Ni were found to be 15, 42, 85, 18, 87 and 47 mg kg, respectively in Ballia and 13, 31, 73, 22, 77 and 34 mg kg, respectively in Ghazipur.
View Article and Find Full Text PDFThiourea (TU) is a chemo-priming agent and non-physiological reactive oxygen species (ROS) scavenger whose application has been found to reduce As accumulation in rice grains along with improved growth and yield. The present field study explored TU-mediated mechanistic changes in silicon (Si) assimilation in root/shoot, biochemical and molecular mechanisms of arsenic (As) stress amelioration in rice cultivars. Gosai and Satabdi (IET-4786) rice cultivars were selected for field experiment at three different places; control field and two other As contaminated experimental fields (EF1 and EF2) in West Bengal, India.
View Article and Find Full Text PDFThe increasing industrialization and urbanization are also triggering environmental pollution, mostly unnoticed, in the case of soil pollution due to uncontrolled contamination by toxic elemental dispersion. The present study focused on this aspect and studied the clean-up of urban soil in a low-cost and eco-friendly way to restrict arsenic (As), lead (Pb) and mercury (Hg) contamination. Four potential ornamental plants, Catharanthus roseus (vinca), Cosmos bipinnatus (cosmos), Gomphrena globose (globosa) and Impatiens balsamina (balsamina) were used along with zero valent iron (ZVI) nanoparticles (Fe NPs) for remediation of the soil spiked with As (70 mg kg), Pb (600 mg kg) and Hg (15 mg kg) in a 60 d pot experiment.
View Article and Find Full Text PDFArsenic (As) is a ubiquitous environmental carcinogen that enters the human food chain mainly through rice grains. In the present study, we evaluated the potential of thiourea (TU; non-physiological reactive oxygen species scavenger) in mitigating the negative effects of arsenic (As) stress in indica rice variety IR64, with the overall aim to reduce grain As accumulation. At seedling stage, As + TU treatment induced the formation of more numerous and longer crown roots compared with As alone.
View Article and Find Full Text PDFArsenic (As) assessment in agricultural soils and corresponding crops is necessary from the global health safety perspective. To the best of our knowledge, we are reporting for the first time, As flux determining parametric equations for paddy field with seasonal rice cultivation under conventional flooding and dry-wet irrigation approaches. Rigorous field experiments and measuring quantitative parameters, flushed out or percolated into the deeper soil As flux was assessed.
View Article and Find Full Text PDFThe present study delineates the interactions of arsenic (As), a carcinogenic metalloid, and thiourea (TU), a non-physiological reactive oxygen species (ROS) scavenger, in rice plants grown in As contaminated fields in West Bengal, India. The study was performed for four consecutive seasons (two boro and two aman) in 2016 and 2017 with two local rice cultivars; Gosai and Satabdi (IET-4786) in a control and two As contaminated experimental fields. Thiourea (0.
View Article and Find Full Text PDFThe study implements a periodical intermittent water cycle during rice cultivation providing insight potential in minimizing soil bio-available arsenic. Soil As concentrations were 34 ± 0.49 and 72.
View Article and Find Full Text PDFThe present study measured arsenic (As) concentrations in soil, groundwater and rice grain samples in two villages, Sarapur and Chinili, under Chakdaha block, Nadia district, West Bengal, India. This study also included a survey of the two villages to understand the knowledge among villagers about the As problem. Soil and groundwater samples were collected from fields in two villages while rice grain samples were collected from villagers' houses.
View Article and Find Full Text PDFArsenic (As) is a carcinogenic element threatening the health of millions of people around the world. The sources for human exposure include drinking water, crops, processed food items, vegetables, mushrooms, animal products etc. The people at most risk are those living in hotspots of As contamination viz.
View Article and Find Full Text PDFPhosphorus (P) is an essential element required for incorporation into several biomolecules and for various biological functions; it is, therefore, vital for optimal growth and development of plants. The extensive research on identifying the processes underlying the uptake, transport, and homeostasis of phosphate (Pi) in various plant organs yielded valuable information. The transport of Pi occurs from the soil into root epidermal cells, followed by loading into the root xylem vessels for distribution into other plant organs.
View Article and Find Full Text PDFEichhornia crassipes (water hyacinth), imparts deficiency of soluble arsenic and other toxic metal (loid)s through rhizofiltration and phytoaccumulation. Without proper management strategy, this phytoremediation of metal (loid)s might fail and get reverted back to the environment, contaminating the nearby water bodies. This study, focused on bio-conversion of phytoremediating hyacinths, spiked with 100 times and greater arsenic, lead and cadmium concentrations than the average water contamination, ranging in 58.
View Article and Find Full Text PDF