The metrological quality of a measurement is characterised by evaluating the uncertainty in the measurement. In this paper, uncertainty in personal dose measured using individual monitoring CaSO4:Dy-based thermoluminescence dosimeter badge is evaluated by application of the guide to the expression of uncertainty in measurement method. The present dose reporting quantity, whole body dose (WBD) and the proposed quantity, personal dose equivalent, Hp(10) has been used as measurands.
View Article and Find Full Text PDFThe study presents a novel approach to analysing the thermoluminescence (TL) glow curves (GCs) of CaSO:Dy-based personnel monitoring dosimeters using machine learning (ML). This study demonstrates the qualitative and quantitative impact of different types of anomalies on the TL signal and trains ML algorithms to estimate correction factors (CFs) to account for these anomalies. The results show a good degree of agreement between the predicted and actual CFs, with a coefficient of determination greater than 0.
View Article and Find Full Text PDFIntroduction: As per the recommendations of the American Association of Physicists in Medicine Task Group 43, Monte Carlo (MC) investigators should reproduce previously published dose distributions whenever new features of the code are explored. The purpose of the present study is to benchmark the TG-43 dosimetric parameters calculated using the new MC user-code egs_brachy of EGSnrc code system for three different radionuclides Ir, Yb, and I which represent high-, intermediate-, and low-energy sources, respectively.
Materials And Methods: Brachytherapy sources investigated in this study are high-dose rate (HDR) Ir VariSource (Model VS2000), Yb HDR (Model 4140), and I -low-dose-rate (LDR) (Model OcuProsta).
Background And Aim: Modern radiotherapy modalities, such as Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy involve complex dose delivery. The dose delivery is complex as it involves beam modulation, hence, manual dose calculations for these techniques are not possible. Film dosimetry is commonly used method of dose verification for these modalities because of the advantages associated with it.
View Article and Find Full Text PDFTm is being explored as a source for applications in brachytherapy. Although it has adequate physical properties, such as a short half-life (128.6 d), high specific activity and a mean photon energy of about 66 keV, it has a drawback of low photon yield (only about six photon emissions/100 beta emissions).
View Article and Find Full Text PDFRadiat Prot Dosimetry
December 2020
In this study, the Bayesian probabilistic approach is applied for the estimation of the actual dose using personnel monitoring dose records of occupational workers. To implement the Bayesian approach, the probability distribution of the uncertainty in the reported dose as a function of the actual dose is derived. Using the uncertainty distribution function of reported dose and prior knowledge of dose levels generally observed in a monitoring period, the posterior probability distribution of the actual dose is estimated.
View Article and Find Full Text PDFIn the present study, machine learning (ML) methods for the identification of abnormal glow curves (GC) of CaSO4:Dy-based thermoluminescence dosimeters in individual monitoring are presented. The classifier algorithms, random forest (RF), artificial neural network (ANN) and support vector machine (SVM) are employed for identifying not only the abnormal glow curve but also the type of abnormality. For the first time, the simplest and computationally efficient algorithm based on RF is presented for GC classifications.
View Article and Find Full Text PDFThe objective of this paper is to estimate the combined uncertainty in the measurement of dose equivalent at laboratory level using CaSO4:Dy-based thermoluminescent dosemeter badge system by including variations in the components of the system. The variability of performance of the system is analysed using random effects one way analysis of variance model. The model enables estimation of the overall variance of the performance of the sampled population.
View Article and Find Full Text PDFThe objective of this paper is to study the effect of consecutive heating of TL elements of a thermoluminescence dosemeter (TLD) card in hot N2 gas-based TLD badge reader. The effect is studied by theoretical simulations of clamped heating profiles of the discs and resulting TL glow curves. The simulated temperature profile accounts for heat transfer to disc from hot gas as well as radiative and convective heat exchanges between the disc and the surrounding.
View Article and Find Full Text PDF