Publications by authors named "Munier-Jolain N"

Harnessing the plant microbiome through plant genetics is of increasing interest to those seeking to improve plant nutrition and health. While genome-wide association studies (GWAS) have been conducted to identify plant genes driving the plant microbiome, more multidisciplinary studies are required to assess the relationships among plant genetics, plant microbiome and plant fitness. Using a metabarcoding approach, we characterized the rhizosphere bacterial communities of a core collection of 155 Medicago truncatula genotypes along with the plant phenotype and investigated the plant genetic effects through GWAS.

View Article and Find Full Text PDF

One current challenge in sustainable agriculture is to redesign cropping systems to reduce the use and impacts of pesticides, and by doing so protect the environment, in particular groundwater, and human health. As a large range of systems could be explored and a wide number of pesticides used, field experiments cannot be carried out to study the sustainability of each of them. Thus, the objectives of this work were (1) to measure water flows and pesticide leaching in six contrasted low input cropping systems based on sunflower-wheat rotation, oilseed rape-wheat-barley rotation, and maize monoculture, experimented for three years in three different soil and climatic conditions, and (2) to assess and to compare the ability of three pesticide fate models (MACRO, PEARL, PRZM) to simulate the observed water flows and pesticide concentrations.

View Article and Find Full Text PDF

Temporal crop diversification could reduce pesticide use by increasing the proportion of crops with low pesticide use (dilution effects) or enhancing the regulation of pests, weeds and diseases (regulation effects). Here, we use the French National DEPHY Network to compare pesticide use between 16 main crops (dilution effect) and to assess whether temporal crop taxonomic and functional diversification, as implemented in commercial farms specialized in arable field crops, could explain variability in total pesticide use within 16 main crops (regulation effect). The analyses are based on 14,556 crop observations belonging to 1334 contrasted cropping systems spanning the diversity of French climatic regions.

View Article and Find Full Text PDF

The IPM IPM Resource Toolbox (Toolbox) has been developed as an interactive, online repository of integrated pest management (IPM) resources. Populated with high priority resources for farmers and their advisors during the project, its structure enables additional resources added over time. The repository is a public interactive website, available to anyone looking to access, understand, and implement IPM.

View Article and Find Full Text PDF

Higher temperatures induced by the on-going climate change are a major cause of yield reduction in legumes. Pea ( L.) is an important annual legume crop grown in temperate regions for its high seed nitrogen (N) concentration.

View Article and Find Full Text PDF

Background: Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem.

View Article and Find Full Text PDF

Achieving sustainable crop production while feeding an increasing world population is one of the most ambitious challenges of this century. Meeting this challenge will necessarily imply a drastic reduction of adverse environmental effects arising from agricultural activities. The reduction of pesticide use is one of the critical drivers to preserve the environment and human health.

View Article and Find Full Text PDF

The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO).

View Article and Find Full Text PDF

Amongst the biodiversity components of agriculture, weeds are an interesting model for exploring management options relying on the principle of ecological intensification in arable farming. Weeds can cause severe crop yield losses, contribute to farmland functional biodiversity and are strongly associated with the generic issue of pesticide use. In this paper, we address the impacts of herbicide reduction following a causal framework starting with herbicide reduction and triggering changes in (i) the management options required to control weeds, (ii) the weed communities and functions they provide and (iii) the overall performance and sustainability of the implemented land management options.

View Article and Find Full Text PDF

Reducing pesticide use is one of the high-priority targets in the quest for a sustainable agriculture. Until now, most studies dealing with pesticide use reduction have compared a limited number of experimental prototypes. Here we assessed the sustainability of 48 arable cropping systems from two major agricultural regions of France, including conventional, integrated and organic systems, with a wide range of pesticide use intensities and management (crop rotation, soil tillage, cultivars, fertilization, etc.

View Article and Find Full Text PDF

To complement N2 fixation through symbiosis, legumes can efficiently acquire soil mineral N through adapted root architecture. However, root architecture adaptation to mineral N availability has been little studied in legumes. Therefore, this study investigated the effect of nitrate availability on root architecture in Medicago truncatula and assessed the N-uptake potential of a new highly branched root mutant, TR185.

View Article and Find Full Text PDF

Pesticides pose serious threats to both human health and the environment. In Europe, farmers are encouraged to reduce their use, and in France a recent environmental policy fixed a target of halving the pesticide use by 2018. Organic and integrated cropping systems have been proposed as possible solutions for reducing pesticide use, but the effect of reducing pesticide use on crop yield remains unclear.

View Article and Find Full Text PDF

Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM).

View Article and Find Full Text PDF

One difficulty when analyzing the determinants at the origin of plant phenotypic differences is that measured plant traits are frequently integrative: they result from the integration of a large number of physiological processes under the control of genetic and environmental factors. In a previous report, we demonstrated that dissecting integrative traits into simpler components using a simple crop physiology model was a valuable method for detecting quantitative trait loci (QTL) related to the nitrogen nutrition for a recombinant inbred lines population of Medicago truncatula. Here, using the same data set, we demonstrate the relevance of decomposing integrative traits for understanding biological differences among phenotypes, independently of QTL detection.

View Article and Find Full Text PDF

Medicago truncatula is used as a model plant for exploring the genetic and molecular determinants of nitrogen (N) nutrition in legumes. In this study, our aim was to detect quantitative trait loci (QTL) controlling plant N nutrition using a simple framework of carbon/N plant functioning stemming from crop physiology. This framework was based on efficiency variables which delineated the plant's efficiency to take up and process carbon and N resources.

View Article and Find Full Text PDF

An integrative biology approach was conducted in Medicago truncatula for: (i) unraveling the coordinated regulation of NO3-, NH4+ and N(2) acquisition by legumes to fulfill the plant N demand; and (ii) modeling the emerging properties occurring at the whole plant level. Upon localized addition of a high level of mineral N, the three N acquisition pathways displayed similar systemic feedback repression to adjust N acquisition capacities to the plant N status. Genes associated to these responses were in contrast rather specific to the N source.

View Article and Find Full Text PDF

The international consensus on Medicago truncatula as a model system has lead to the development of powerful approaches for dissecting the genetic and molecular bases of legume nitrogen nutrition. However, such approaches now come up against a poor knowledge of the phenotypic traits that should be used for the large-scale screening of the genotypic variability associated with nitrogen nutrition. This issue was unravelled in a previous report, in which an ecophysiological approach allowed a better understanding of the relationships between plant nitrogen nutrition and plant growth traits, for the model symbiotic association between M.

View Article and Find Full Text PDF

In legume plants, the determination of individual seed weight is a complex phenomenon that depends on two main factors. The first one corresponds to the number of cotyledon cells, which determines the potential seed weight as the cotyledon cell number is related to seed growth rate during seed filling. Since cell divisions take place between flowering and the beginning of seed filling, any stress occurring before the beginning of seed filling can affect individual seed growth rate (C and N reserve accumulation in seeds), and thus individual seed weights.

View Article and Find Full Text PDF

A better knowledge of the nitrogen nutrition of Medicago truncatula at the whole plant level and its modulation by environmental factors is a crucial step to reach a complete understanding of legume nitrogen nutrition. This study was based on the symbiotic system that is the most commonly used by the research community (M. truncatula cv.

View Article and Find Full Text PDF

Increasing pea (Pisum sativum) seed nutritional value and particularly seed protein content, while maintaining yield, is an important challenge for further development of this crop. Seed protein content and yield are complex and unstable traits, integrating all the processes occurring during the plant life cycle. During filling, seeds are the main sink to which assimilates are preferentially allocated at the expense of vegetative organs.

View Article and Find Full Text PDF

To facilitate the phenotypic characterization of Medicago truncatula, our aim was to provide a framework of analysis of flowering in response to environmental factors. The flowering of the line A17 was analysed in different conditions of temperature, duration of vernalization and photoperiod. Flowering was characterized using three descriptors at the axis level: the position of the first reproductive node (1RN), the date of beginning of flowering (DBF) and the florochron (RFa-1) corresponding to the reciprocal of the rate of progression of flowering along each axis.

View Article and Find Full Text PDF

A crucial step for identifying genes of interest in legume crops is to determine gene function in Medicago truncatula. To facilitate functional genomics in this species, an ecophysiological framework of analysis was developed. Our primary aim was to establish a standard terminology for identifying each organ on the plant.

View Article and Find Full Text PDF

New tools, such as ordered mutant libraries, microarrays and sequence based comparative maps, are available for genetic and genomic studies of legumes that are being used to shed light on seed production, the objective of most arable farming. The new information and understanding brought by these tools are revealing the biological processes that underpin and impact on seed production.

View Article and Find Full Text PDF

The effect of moderate temperature on seed N concentration during the seed-filling period was evaluated in pea (Pisum sativum L.) kept in growth cabinets and the relation between plant assimilate availability and the variation of seed N concentration with temperature was investigated. Seed N concentration of pea was significantly lowered when temperature during the seed-filling period decreased from a day / night temperature of 25 / 20°C to 15 / 10°C.

View Article and Find Full Text PDF

The fluxes of (1) exogenous nitrogen (N) assimilation and (2) remobilization of endogenous N from vegetative plant compartments were measured by 15N labeling during the seed-filling period in pea (Pisum sativum L. cv Cameor), to better understand the mechanism of N remobilization. While the majority (86%) of exogenous N was allocated to the vegetative organs before the beginning of seed filling, this fraction decreased to 45% at the onset of seed filling, the remainder being directed to seeds.

View Article and Find Full Text PDF