Publications by authors named "Munford V"

The ultraviolet (UV) component of sunlight can damage DNA. Although most solar UV is absorbed by the ozone layer, wavelengths > 300 nm (UVA and UVB bands) can reach the Earth's surface. It is essential to understand the genotoxic effects of UV light, particularly in natural environments.

View Article and Find Full Text PDF

Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified.

View Article and Find Full Text PDF

Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging.

View Article and Find Full Text PDF

Infection with some mucosal human papillomavirus (HPV) types is the etiological cause of cervical cancer and of a significant fraction of vaginal, vulvar, anal, penile, and head and neck carcinomas. DNA repair machinery is essential for both HPV replication and tumor cells survival suggesting that cellular DNA repair machinery may play a dual role in HPV biology and pathogenesis. Here, we silenced genes involved in DNA Repair pathways to identify genes that are essential for the survival of HPV-transformed cells.

View Article and Find Full Text PDF

Background: Given an increased global prevalence of complementary and alternative medicine (CAM) use, healthcare providers commonly seek CAM-related health information online. Numerous online resources containing CAM-specific information exist, many of which are readily available/accessible, containing information shareable with their patients. To the authors' knowledge, no study has summarized nor assessed the quality of content contained within these online resources for at least a decade, specifically pertaining to information about adverse effects or interactions.

View Article and Find Full Text PDF

Background: While there are several existing eHealth technologies for drug-drug interactions and stand-alone drug adverse effects, it appears that considerably less attention is focussed on that of complementary and alternative medicine (CAM). Despite poor knowledge of their potential interactions and side effects, many patients use CAM. This justifies the need to identify what eHealth technologies are assisting in identifying potential 1) adverse drug interactions with CAM, 2) adverse CAM-CAM interactions or 3) standalone CAM adverse events or side effects.

View Article and Find Full Text PDF

Sunlight ultraviolet (UV) radiation constitutes an important environmental genotoxic agent that organisms are exposed to, as it can damage DNA directly, generating pyrimidine dimers, and indirectly, generating oxidized bases and single-strand breaks (SSBs). These lesions can lead to mutations, triggering skin and eye disorders, including carcinogenesis and photoaging. Stratospheric ozone layer depletion, particularly in the Antarctic continent, predicts an uncertain scenario of UV incidence on the Earth in the next decades.

View Article and Find Full Text PDF

In central Brazil, in the municipality of Faina (state of Goiás), the small and isolated village of Araras comprises a genetic cluster of xeroderma pigmentosum (XP) patients. The high level of consanguinity and the geographical isolation gave rise to a high frequency of XP patients. Recently, two founder events were identified affecting that community, with two independent mutations at the POLH gene, c.

View Article and Find Full Text PDF

Background: Xeroderma pigmentosum (XP) patients present a high risk of developing skin cancer and other complications at an early age. This disease is characterized by mutations in the genes related to the DNA repair system.

Objectives: To describe the clinical and molecular findings in a cohort of 32 Brazilian individuals who received a clinical diagnosis of XP.

View Article and Find Full Text PDF

Somatic hypermutation of immunoglobulin genes is a highly mutagenic process that is B cell-specific and occurs during antigen-driven responses leading to antigen specificity and antibody affinity maturation. Mutations at the Ig locus are initiated by Activation-Induced cytidine Deaminase and are equally distributed at G/C and A/T bases. This requires the establishment of error-prone repair pathways involving the activity of several low fidelity DNA polymerases.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how UVA radiation induces mutations in human cells lacking the DNA repair enzyme pol eta, using whole-exome sequencing for analysis.
  • The researchers found that UVA exposure led to increased mutation rates, particularly C>T transitions at sites prone to forming pyrimidine dimers, while non-irradiated XP-V cells showed significant C>A transversions linked to oxidative stress.
  • Interestingly, the mutation patterns observed in UVA-irradiated XP-V cells closely resemble those found in human skin cancer, underscoring the importance of studying DNA repair-deficient cells to explore how environmental factors contribute to cancer development.
View Article and Find Full Text PDF

Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments.

View Article and Find Full Text PDF

The UVA component of sunlight induces DNA damage, which are basically responsible for skin cancer formation. Xeroderma Pigmentosum Variant (XP-V) patients are defective in the DNA polymerase pol eta that promotes translesion synthesis after sunlight-induced DNA damage, implying in a clinical phenotype of increased frequency of skin cancer. However, the role of UVA-light in the carcinogenesis of these patients is not completely understood.

View Article and Find Full Text PDF

The crucial role of DNA polymerase eta in protecting against sunlight-induced tumors is evidenced in Xeroderma Pigmentosum Variant (XP-V) patients, who carry mutations in this protein and present increased frequency of skin cancer. XP-V cellular phenotypes may be aggravated if proteins of DNA damage response (DDR) pathway are blocked, as widely demonstrated by experiments with UVC light and caffeine. However, little is known about the participation of DDR in XP-V cells exposed to UVA light, the wavelengths patients are mostly exposed.

View Article and Find Full Text PDF

DUOX1 is an HO-generating enzyme related to a wide range of biological features, such as hormone synthesis, host defense, cellular proliferation, and fertilization. DUOX1 is frequently downregulated in lung and liver cancers, suggesting a tumor suppressor role for this enzyme. Here, we show that DUOX1 expression is decreased in breast cancer cell lines and also in breast cancers when compared to the nontumor counterpart.

View Article and Find Full Text PDF

Background: Xeroderma pigmentosum (XP) is a rare human syndrome associated with hypersensitivity to sunlight and a high frequency of skin tumours at an early age. We identified a community in the state of Goias (central Brazil), a sunny and tropical region, with a high incidence of XP (17 patients among approximately 1000 inhabitants).

Objectives: To identify gene mutations in the affected community and map the distribution of the affected alleles, correlating the mutations with clinical phenotypes.

View Article and Find Full Text PDF

Group A human rotaviruses (HuRVA) are causative agents of acute gastroenteritis. Six viral structural proteins (VPs) and six nonstructural proteins (NSPs) are produced in RV-infected cells. NSP4 is a diarrhoea-inducing viral enterotoxin and NSP4 gene analysis revealed at least 15 (E1-E15) genotypes.

View Article and Find Full Text PDF

Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma.

View Article and Find Full Text PDF

The discovery of DNA repair defects in human syndromes, initially in xeroderma pigmentosum (XP) but later in many others, led to striking observations on the association of molecular defects and patients' clinical phenotypes. For example, patients with syndromes resulting from defective nucleotide excision repair (NER) or translesion synthesis (TLS) present high levels of skin cancer in areas exposed to sunlight. However, some defects in NER also lead to more severe symptoms, such as developmental and neurological impairment and signs of premature aging.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is the most flexible of all known DNA-repair mechanisms, and XPG is a 3'-endonuclease that participates in NER. Mutations in this gene (ERCC5) may result in the human syndrome xeroderma pigmentosum (XP) and, in some cases, in the complex phenotype of Cockayne syndrome (CS). Two Brazilian XP siblings, who were mildly affected, were investigated and classified into the XP-G group.

View Article and Find Full Text PDF

RotaTeq® (Merck & Company, Inc, Whitehouse Station, NJ, USA) is an oral pentavalent rotavirus vaccine (RV5) that has shown high and consistent efficacy in preventing rotavirus gastroenteritis (RGE) in randomised clinical trials previously conducted in industrialised countries with high medical care resources. To date, the efficacy and effectiveness data for RV5 are available in some Latin American countries, but not Brazil. In this analysis, we projected the effectiveness of RV5 in terms of the percentage reduction in RGE-related hospitalisations among children less than five years of age in four regions of Brazil, using a previously validated mathematical model.

View Article and Find Full Text PDF

In this study, 331 samples from calves less than one month old from a dairy herd in the district of Piracanjuba, state of Goiás, Brazil were tested for rotavirus. Thirty-three samples (9.9%) tested positive for rotavirus.

View Article and Find Full Text PDF

Background: Brazil implemented routine immunization with the human rotavirus vaccine, Rotarix, in 2006 and vaccination coverage reached 81% in 2008 in São Paulo. Our aim was to assess the impact of immunization on the incidence of severe rotavirus acute gastroenteritis (AGE).

Methods: We performed a 5-year (2004-2008) prospective surveillance at a sentinel hospital in São Paulo, with routine testing for rotavirus in all children less than 5 years of age hospitalized with AGE.

View Article and Find Full Text PDF