Curr Opin Plant Biol
June 2024
Messenger RNAs (mRNAs) are the templates for protein translation but can also act as non-cell-autonomous signaling molecules. Plants input endogenous and exogenous cues to mobile mRNAs and output them to local or systemic target cells and organs to support specific plant responses. Mobile mRNAs form ribonucleoprotein (RNP) complexes with proteins during transport.
View Article and Find Full Text PDFMessenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport.
View Article and Find Full Text PDFPlant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants.
View Article and Find Full Text PDFMulticellular organisms use transcripts and proteins as signaling molecules for cell-to-cell communication. Maize KNOTTED1 (KN1) was the first homeodomain transcription factor identified in plants, and functions in maintaining shoot stem cells. KN1 acts non-cell autonomously, and both its messenger RNA (mRNA) and protein traffic between cells through intercellular nanochannels called plasmodesmata.
View Article and Find Full Text PDFPlasmodesmata (PD) are channels in the walls of plant cells which enable cell-to-cell information transfer. This includes the selective transport of specific transcription factors that control cell fate during plant development. KNOTTED1 (KN1) homeobox (KNOX) family transcription factors that are essential for the maintenance and function of stem cells in shoot meristems use this trafficking pathway, but its mechanism is largely unknown.
View Article and Find Full Text PDFMessenger RNAs (mRNAs) function as mobile signals for cell-to-cell communication in multicellular organisms. The KNOTTED1 (KN1) homeodomain family transcription factors act non–cell autonomously to control stem cell maintenance in plants through cell-to-cell movement of their proteins and mRNAs through plasmodesmata; however, the mechanism of mRNA movement is largely unknown. We show that cell-to-cell movement of a KN1 mRNA requires ribosomal RNA–processing protein 44A (AtRRP44A), a subunit of the RNA exosome that processes or degrades diverse RNAs in eukaryotes.
View Article and Find Full Text PDFThe localization of a protein provides important information about its biological functions. The visualization of proteins by immunofluorescence has become an essential approach in cell biology. Here, we describe an easy-to-follow immunofluorescence protocol to localize proteins in whole-mount tissues of maize (Zea mays) and Arabidopsis.
View Article and Find Full Text PDFCell-to-cell communication is tightly regulated in response to environmental stimuli in plants. We previously used a photoconvertible fluorescent protein Dendra2 as a model reporter to study this process. This experiment revealed that macromolecular trafficking between protonemal cells in Physcomitrella patens is suppressed in response to abscisic acid (ABA).
View Article and Find Full Text PDFIn plants, the stem cells that form the shoot system reside within the shoot apical meristem (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be modulated by various endogenous or exogenous factors, such as chromatin state, hormone signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of genes that control SAM size is still limited, and in particular, the regulation by ROS signaling is only beginning to be comprehended.
View Article and Find Full Text PDFA fascinating feature of plant growth and development is that plants initiate organs continually throughout their lifespan. The ability to do this relies on specialized groups of pluripotent stem cells termed meristems, which allow for the elaboration of the shoot, root, and vascular systems. We now have a deep understanding of the genetic networks that control meristem initiation and stem cell maintenance, including the roles of receptors and their ligands, transcription factors, and integrated hormonal and chromatin control.
View Article and Find Full Text PDFIn multi-cellular organisms, cell-to-cell communication is crucial for adapting to changes in the surrounding environment. In plants, plasmodesmata (PD) provide a unique pathway for cell-to-cell communication. PD interconnect most cells and generate a cytoplasmic continuum, allowing the trafficking of various micro- and macromolecules between cells.
View Article and Find Full Text PDFPositional information is crucial for the determination of plant cell fates, and it is established based on coordinated cell-to-cell communication, which in turn is essential for plant growth and development. Plants have evolved a unique communication pathway, with tiny channels called plasmodesmata (PD) spanning the cell wall. PD interconnect most cells in the plant and generate a cytoplasmic continuum, to mediate short- and long-distance trafficking of various molecules.
View Article and Find Full Text PDFThe shoot stem cell niche, contained within the shoot apical meristem (SAM) is maintained in Arabidopsis by the homeodomain protein SHOOT MERISTEMLESS (STM). STM is a mobile protein that traffics cell-to-cell, presumably through plasmodesmata. In maize, the STM homolog KNOTTED1 shows clear differences between mRNA and protein localization domains in the SAM.
View Article and Find Full Text PDFFerredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT.
View Article and Find Full Text PDFPlant growth, development, and environmental responses require the proper regulation of intercellular movement of signals and nutrients. For this, plants have specialized cytoplasmic channels, the plasmodesmata (PD), which allow the symplasmic movement of micro- and macromolecules between neighboring cells. Internal and external signals spatio-temporally regulate the movement of molecules through the PD to control plant development and environmental responses.
View Article and Find Full Text PDFCell-to-cell transport of molecules in plants must be properly regulated for plant growth and development. One specialized mechanism that plants have evolved involves transport through plasmodesmata (PD), but when and how transport of molecules via PD is regulated among individual cells remains largely unknown, particularly at the single-cell level. Here, we developed a tool for quantitatively analyzing cell-to-cell transport via PD at a single-cell level using protonemata of Physcomitrella patens and a photoconvertible fluorescent protein, Dendra2.
View Article and Find Full Text PDF