We propose using cocrystals as effective polarization matrices for triplet dynamic nuclear polarization (DNP) at room temperature. The polarization source can be uniformly doped into cocrystals formed through acid-acid, amide-amide, and acid-amide synthons. The dense-packing crystal structures, facilitated by multiple hydrogen bonding and π-π interactions, result in extended relaxation times, enabling efficient polarization diffusion within the crystals.
View Article and Find Full Text PDFThis study investigates the gate-opening closed-to-open-pore structural transition of a porous coordination polymer induced by CO adsorption. Solid-state C NMR examination of adsorbed CO and framework dynamics reveals the surface adsorption state of the closed structure below the transition pressure and an intermediate structure during the transition process.
View Article and Find Full Text PDFThe hyperpolarization of biomolecules at room temperature could facilitate highly sensitive magnetic resonance imaging for metabolic studies and nuclear magnetic resonance (NMR)-based screenings for drug discovery. In this study, we demonstrate the hyperpolarization of biomolecules in eutectic crystals using photoexcited triplet electrons at room temperature. Eutectic crystals composed of the domains of benzoic acid doped with the polarization source and analyte domains were prepared using a melting-quenching process.
View Article and Find Full Text PDFUnderstanding the adsorption and diffusional dynamics of CO in metal-organic frameworks (MOFs) is essential in the application of these materials to CO capture and separation. We show that the dynamics of adsorbed CO is related to the rotational motion of ligands located in the narrow pore windows of a MOF using solid-state nuclear magnetic resonance (NMR) spectroscopy. NMR analyses of local dynamics reveal that CO adsorbed in the pore hinders the rotation of the ligands.
View Article and Find Full Text PDFWe first report the systematic control of the reactivity of HO vapor in metal-organic frameworks (MOFs) with Pt nanocrystals (NCs) through ligand functionalization. We successfully synthesized Pt NCs covered with a water-stable MOF, UiO-66 (Pt@UiO-66), having different metal ions or functionalized ligands. The ligand functionalization of UiO-66 significantly affected the catalytic performance of the water-gas shift reaction, and the replacement of Zr ions with Hf ions in UiO-66 had no impact on the catalytic activity.
View Article and Find Full Text PDFWe describe the preparation of the crystalline and glassy state of a coordination polymer displaying proton conduction and guest-accessible porosity. EXAFS and solid-state NMR analyses indicated that pyrophosphate and phosphate ions are the main proton transporters in the glass and that homogeneously distributed 5-chloro-1H-benzimidazole in the glass provides the porosity.
View Article and Find Full Text PDFDesign to store gas molecules, such as CO , H , and CH , under low pressure is one of the most important challenges in chemistry and materials science. Herein, we describe the storage of CO in the cavities of a porous coordination polymer (PCP) using molecular rotor dynamics. Owing to the narrow pore windows of PCP, CO was not adsorbed at 195 K.
View Article and Find Full Text PDFWe describe the encapsulation of mobile proton carriers into defect sites in nonporous coordination polymers (CPs). The proton carriers were encapsulated with high mobility and provided high proton conductivity at 150 °C under anhydrous conditions. The high proton conductivity and nonporous nature of the CP allowed its application as an electrolyte in a fuel cell.
View Article and Find Full Text PDFTwo new isomorphous three-dimensional porous coordination polymers, {[Cd(bpe)0.5(bdc)(H2O)]·EtOH}n (1) and {[Cd(bpe)0.5(bdc)(H2O)]·2H2O}n (2) [bpe = 1,2-bis(4-pyridyl)ethane, and H2bdc = 1,4-benzenedicarboxylic acid], have been synthesized by altering the solvent media.
View Article and Find Full Text PDFRational design to control the dynamics of molecular rotors in crystalline solids is of interest because it offers advanced materials with precisely tuned functionality. Herein, we describe the control of the rotational frequency of rotors in flexible porous coordination polymers (PCPs) using a solid-solution approach. Solid-solutions of the flexible PCPs [{Zn(5-nitroisophthalate)x(5-methoxyisophthalate)1-x(deuterated 4,4'-bipyridyl)}(DMF·MeOH)]n allow continuous modulation of cell volume by changing the solid-solution ratio x.
View Article and Find Full Text PDFThe establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles.
View Article and Find Full Text PDFThe solid-to-liquid phase transition, a fundamental process commonly observed for various types of substances with significant potential for application, has been given little attention in the field of coordination polymers (CPs) despite the rich functionality of these compounds. In this article, we report the reversible solid-to-liquid phase transition of crystalline CPs. These CPs are composed of zinc ions, phosphate, and azoles, and a well-balanced composition, ionicity, and bond strength afford "melting" CPs.
View Article and Find Full Text PDFNovel organic-inorganic hybrid liposomes, so-called coordination polymersomes (CPsomes), with artificial domains that exhibit strong lateral cohesion were prepared by a three-step procedure that formed a coordinative interaction leading to a lipid bilayer. First, the lipophilic complex (dabco-C18)[Mn(N)(CN)4(dabco-C18)] (1; dabco-C18(+)=1,4-diazabicyclo[2,2,2]octane-(CH2)17-CH3 cation), was synthesized. 1 has a lipophilic alkyl tail part and a tetracyanometallate head group, which can be used for an expansion to two-dimensional coordination networks.
View Article and Find Full Text PDFWe observed an ordered-to-disordered structural transformation in a Cu(2+) coordination polymer and investigated its influence on the proton conductivity. The transformation generated highly mobile proton carriers in the structure. The resulting material exhibited a conductivity greater than 10(-2) S cm(-1) at 130 °C.
View Article and Find Full Text PDFWe report the synthesis and characterization of a coordination polymer that exhibits both intrinsic proton conductivity and gas adsorption. The coordination polymer, consisting of zinc ions, benzimidazole, and orthophosphate, exhibits a degree of flexibility in that it adopts different structures before and after dehydration. The dehydrated form shows higher intrinsic proton conductivity than the original form, reaching as high as 1.
View Article and Find Full Text PDFWe have synthesized four porous coordination polymers (PCPs) using Zn(2+), 4,4'-sulfonyldibenzoate (sdb), and four types of dinitrogen linker ligands, 1,4-diazabicyclo[2,2,2]octane (dabco), 1,4-bis(4-pyridyl)benzene (bpb), 3,6-bis(4-pyridyl)-1,2,4,5-tetrazine (bpt), and 4,4'-bipyridyl (bpy). The bent sdb ligands form a rhombic space connected by zinc paddle-wheel units to form a one-dimensional double chain, and each dinitrogen ligand linked the one-dimensional double chains. There are different assembled structures of two-dimensional sheets with the same connectivities between Zn(2+) and the organic ligands.
View Article and Find Full Text PDFA Ca(2+) porous coordination polymer with 1D channels was functionalized by the postsynthesis addition of LiCl to enhance the H(+) conductivity. The compound showed over 10(-2) S cm(-1) at 25 °C and 20% relative humidity. Pulse-field gradient NMR elucidated that the fast H(+) conductivity was achieved by the support of Li(+) ion movements in the channel.
View Article and Find Full Text PDFHigh selectivity and low-energy regeneration for adsorption of CO(2) gas were achieved concurrently in a two-dimensional Cu(II) porous coordination polymer, [Cu(PF(6))(2)(4,4'-bpy)(2)](n) (4,4'-bpy = 4,4'-bipyridine), containing inorganic fluorinated PF(6)(-) anions that can act as moderate interaction sites for CO(2) molecules.
View Article and Find Full Text PDFWe investigated the configuration of substituent groups that are post-synthetically bound to the pore surface in a porous coordination polymer. This study demonstrates the observations of orientation and coordination fashions of the grafted groups, which contribute towards improved proton conductivity in porous frameworks.
View Article and Find Full Text PDFWe synthesized a coordination polymer consisting of Zn(2+), 1,2,4-triazole, and orthophosphates, and demonstrated for the first time intrinsic proton conduction by a coordination network. The compound has a two-dimensional layered structure with extended hydrogen bonds between the layers. It shows intrinsic proton conductivity along the direction parallel to the layers, as elucidated by impedance studies of powder and single crystals.
View Article and Find Full Text PDFWe elucidated the specific adsorption property of CO(2) for a densely interpenetrated coordination polymer which was a nonporous structure and observed gas separation properties of CO(2) over CH(4), C(2)H(4), and C(2)H(6), studied under both equilibrium and kinetic conditions of gases at ambient temperature and pressure.
View Article and Find Full Text PDFAn ionic coordination network consisting of protonated imidazole and anionic one-dimensional chains of Zn(2+) phosphate was synthesized. The compound possesses highly mobile ions in the crystal lattice and behaves as an ionic plastic crystal. The dynamic behavior provides a proton conductivity of 2.
View Article and Find Full Text PDF