Previous research has shown that disorder, dislocation, and carrier concentration are the main factors impacting transitions in the traditional metal-insulator transition (MIT) and metal-semiconductor transition (MST). In this study, it is demonstrated that a non-traditional metal-semiconductor transition governed by two-layer conduction is possible by tuning the conducting channel of one layer of the two-layer conduction system. By means of the electroless deposition method we produced Au nanofeatures (AuNFs) on p-type silicon (p-Si) as the two-layer conduction system, controlling AuNF coverage (Au%) below and above the percolation threshold (p c).
View Article and Find Full Text PDFPt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-).
View Article and Find Full Text PDF