Alkaliphilic cyanobacteria are suitable candidates to study the effect of alkaline wastewater cultivation on molecular metabolic responses. In the present study, the impact of wastewater, alkalinity, and alkaline wastewater cultivation was studied on the biomass production, biochemical composition, and the alkalinity responsive molecular mechanism through metabolomics. The results suggested a 1.
View Article and Find Full Text PDFThe impact of wastewater cultivation was studied on pollutant removal, biomass production, and biosynthesis of high-value metabolites by newly isolated cyanobacteria namely Acaryochloris marina BERC03, Oscillatoria sp. BERC04, and Pleurocapsa sp. BERC06.
View Article and Find Full Text PDFObjective: To investigate the possible associations of angiotensin converting enzyme insertion or deletion genotypes and alleles with the risk of preeclampsia in Arab women.
Methods: The case-control study was conducted from January 2016 to December 2017 at King Abdulaziz University Hospital and Maternity & Children Hospital, Jeddah, Saudi Arabia, and comprised pregnant women withpreeclampsia as cases and normal pregnant women as controls. Deoxyribonucleic acid was extracted and angiotensin-converting enzyme gene was amplified by polymerase chain reaction analysis and characterised through gel electrophoresis.
Biotechnol Appl Biochem
January 2020
Microalgal research has made significant progress due to versatile and high-value industrial applications of microalgal biomass or its derivatives. However, to explore their full potential and to achieve commercial robustness, microalgal biorefinery needs cost-effective technologies to produce, harvest, and process the microalgal biomass on large scale as higher production and harvesting cost is one of the key hindrances in the commercialization of algae-based products. Among several other algal biomass harvesting technologies, self-flocculation seems to be an attractive, low-cost, and eco-friendly harvesting technology.
View Article and Find Full Text PDFThe suitability of integrating biological and thermal transformation of microalgal biomass to design a biorefinery was studied. The mixed cultivation of Chlorella sp. and Bracteacoccus sp.
View Article and Find Full Text PDFThis study evaluated the bioenergy potential of Wolffia arrhiza via pyrolysis. The biomass was collected from the pond receiving city wastewater. Oven dried powdered biomass was exposed to thermal degradation at three heating rates (10, 30 and 50° C min) using Thermogravimetry-Differential Scanning Calorimetry analyzer in an inert environment.
View Article and Find Full Text PDFBackground: Microbial engineering to produce advanced biofuels is currently the most encouraging approach in renewable energy. Heterologous synthesis of biofuels and other useful industrial chemicals using bacterial cell factories has radically diverted the attentions from the native synthesis of these compounds. However, recovery of biofuels from the media and cellular toxicity are the main hindrances to successful commercialization of advanced biofuels.
View Article and Find Full Text PDFBackground: Eichhornia crassipes is an aquatic plant well known for its role in soil reclamation due to the containment of valuable nutrients. Moreover, its biomass is an abundant and low-cost biological resource. Pyrolysis of a biomass offers one of the cleanest methods to harness the bioenergy stored in the biomass.
View Article and Find Full Text PDFThis work was focused on understanding the pyrolysis of Typha latifolia. Kinetics, thermodynamics parameters and pyrolysis reaction mechanism were studied using thermogravimetric data. Based on activation energies and conversion points, two regions of pyrolysis were established.
View Article and Find Full Text PDFObjective: To evaluate the indigenous bacterial strains of drinking water from the most commercial water types including bottled and filtered water that are currently used in Saudi Arabia.
Methods: Thirty randomly selected commercial brands of bottled water were purchased from Saudi local markets. Moreover, samples from tap water and filtered water were collected in sterilized glass bottles and stored at 4°C.
The genome sequence analysis of Bacillus thuringiensis serovar konkukian S4 has shown to contain two chitinases (Chi74, Chi39) and two chitin-binding proteins (CBP50 and CBP24). The Chi74, Chi39 and CBP50 have been characterized previously. The chitin-binding protein CBP24 was cloned and heterologously expressed in Escherichia coli.
View Article and Find Full Text PDFThis paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain.
View Article and Find Full Text PDF