Publications by authors named "Muna Sabri"

Phospholipase A (PLA) is a secretory digestive enzyme that hydrolyzes ester bond at position of dietary phospholipids, creating free fatty acid and lysophospholipid. The free fatty acids (arachidonic acid) are absorbed into midgut cells. and digestive PLA was characterized using a microplate PLA assay.

View Article and Find Full Text PDF

Mycobacterium tuberculosis FprA (flavoprotein reductase A) is an NAD(P)H- and FAD-binding reductase that is structurally/evolutionarily related to adrenodoxin reductase. Structural analysis implicates Arg(199) and Arg(200) in interactions with the NADP(H) 2'-phosphate group. R199A, R200A and R199A/R200A mutants were characterized to explore the roles of these basic residues.

View Article and Find Full Text PDF

Mtb (Mycobacterium tuberculosis) FprA (flavoprotein reductase A) is an NAD(P)H-dependent FAD-binding reductase that is structurally related to mammalian adrenodoxin reductase, and which supports the catalytic function of Mtb cytochrome P450s. Trp(359), proximal to the FAD, was investigated in light of its potential role in controlling coenzyme interactions, as observed for similarly located aromatic residues in diflavin reductases. Phylogenetic analysis indicated that a tryptophan residue corresponding to Trp(359) is conserved across FprA-type enzymes and in adrenodoxin reductases.

View Article and Find Full Text PDF

We demonstrate that photoexcitation of NAD(P)H reduces heme iron of Mycobacterium tuberculosis P450s CYP121 and CYP51B1 on the microsecond time scale. Rates of formation for the ferrous-carbonmonoxy (Fe(II)-CO) complex were determined across a range of coenzyme/CO concentrations. CYP121 reaction transients were biphasic.

View Article and Find Full Text PDF

The genome of Mycobacterium tuberculosis (Mtb) encodes 20 different cytochrome P450 enzymes (P450s). P450s are mono-oxygenases, which are historically considered to facilitate prokaryotic usage of unusual carbon sources. However, their preponderance in Mtb strongly indicates crucial physiological functions, as does the fact that polycyclic azoles (known P450 inhibitors) have potent anti-mycobacterial effects.

View Article and Find Full Text PDF