Publications by authors named "Mun-Young Hwang"

Adhesive bonding is a suitable joining method to satisfy the increasing industrial demand for carbon fiber-reinforced polymers without the need for a machining process. However, thermoplastic-based carbon fiber-reinforced polymers have small adhesive strength with structural thermoset adhesives. In this study, an ultraviolet irradiation surface treatment was developed to improve the adhesive bonding strength for polyamide-based carbon fiber-reinforced polymer.

View Article and Find Full Text PDF

In this study, we investigated how high-temperature, high-pressure hydrogen affects the optical properties of three kinds of sealing rubber (chloroprene rubber, ethylene propylene diene monomer, and acrylonitrile butadiene rubber) using pulsed terahertz waves. The optical properties of the rubber samples were analyzed before and after exposure to hydrogen (80 °C and 200 bar) for 72 h. The results showed that the terahertz waves had a shorter time delay and a lower signal intensity for all rubber types.

View Article and Find Full Text PDF

In this study, we propose a method to estimate structural deformation and failure by using displacement-strain transformation matrices, i.e., strain-to-displacement transformation (SDT) and displacement-to-strain transformation (DST).

View Article and Find Full Text PDF

Carbon nanotube/polymer-based composites have led to studies that enable the realization of low-cost, high-sensitivity piezoresistive strain sensors. This study investigated the characteristics of piezoresistive multi-walled carbon nanotube (MWCNT)/epoxy composite strain sensors subjected to tensile and compressive loads in one direction at relatively small amounts of strain. A patterned sensor was designed to overcome the disadvantage of the load direction sensitivity differences in the existing sensors.

View Article and Find Full Text PDF

Composite sensors based on carbon nanotubes have been leading to significant research providing interesting aspects for realizing cost-effective and sensitive piezoresistive strain sensors. Here, we report a wide range of piezoresistive performance investigations by modifying fabrication factors such as multi-wall carbon nanotubes (MWCNT) concentration and sensor dimensions for MWCNT/epoxy composites. The resistance change measurement analyzed the influence of the fabrication factors on the changes in the gauge factor.

View Article and Find Full Text PDF