Publications by authors named "Mun-Ho Jeong"

Attention capability is an essential component of human-robot interaction. Several robot attention models have been proposed which aim to enable a robot to identify the attentiveness of the humans with which it communicates and gives them its attention accordingly. However, previous proposed models are often susceptible to noisy observations and result in the robot's frequent and undesired shifts in attention.

View Article and Find Full Text PDF

In the field of robot navigation, the odometric parameters, such as wheel radii and wheelbase length, and the relative pose of the optical sensing camera with respect to the robot are very important criteria for accurate operation. Hence, these parameters are necessary to be estimated for more precise operation. However, the odometric and head-eye parameters are typically estimated separately, which is an inconvenience and requires longer calibration time.

View Article and Find Full Text PDF

This paper presents a stereo camera-based head-eye calibration method that aims to find the globally optimal transformation between a robot's head and its eye. This method is highly intuitive and simple, so it can be used in a vision system for humanoid robots without any complex procedures. To achieve this, we introduce an extended minimum variance approach for head-eye calibration using surface normal vectors instead of 3D point sets.

View Article and Find Full Text PDF