Nanomaterials (Basel)
November 2023
In this work, we have synthesized copper nanoforms (Cu NFs) using ascorbic acid as a reducing agent and polyvinylpyrrolidone as a stabilizer. Elemental characterization using EDS has shown the nanostructure to be of high purity and compare well with commercially sourced nanoforms. SEM images of both Cu NFs show some agglomeration.
View Article and Find Full Text PDFEarly and quick detection of pathogens are crucial for managing the spread of infections in the biomedical, biosafety, food, and agricultural fields. While molecular diagnostics can offer the specificity and reliability in acute infectious diseases, detection of pathogens is often slowed down by the current benchtop molecular diagnoses, which are time consuming, labor intensive, and lack the mobility for application at the point-of-need. In this work, we developed a complete on-farm use detection protocol for the plant-devastating anthracnose agent: .
View Article and Find Full Text PDFCopper has been used as an antimicrobial agent for over a century and is now being added to commercial fungicides. Nanomaterials have attracted much attention due to the special properties they have over their bulk form. We studied nanostructured copper (Cu-NPs), investigating the potential for improved antifungal properties derived from its special properties and studied any effect that the oxidation of copper (CuO-NPs) may have.
View Article and Find Full Text PDFBackground: In this work, we investigated the antioxidant and copper chelating abilities of theaflavin, a polyphenol responsible for astringency, color, and sensation in black tea. Using voltammetric techniques, the analyses were conducted with disposable electrochemical printed carbon chips in conjunction with a portable hand-held potentiostat.
Results: Voltammograms of theaflavin showed five separate oxidation peaks, corresponding to the oxidation of five individual functional groups.
Capsaicin is a natural compound that produces a warm sensation and is known for its remarkable medicinal properties. Understanding the interaction between capsaicin with lipid membranes is essential to clarify the molecular mechanisms behind its pharmacological and biological effects. In this study, we investigated the effect of capsaicin on thermoresponsiveness, fluidity, and phase separation of liposomal membranes.
View Article and Find Full Text PDFSome polyphenols, which are common natural compounds in fruits, vegetables, seeds, and oils, have been considered as potent inhibitors of amyloid beta (Aβ) aggregation, one critical pathogenic event in Alzheimer's disease (AD). However, the mechanisms by which polyphenols affect aggregation are not fully understood. In this study, we aimed to investigate the effect of two classes of polyphenols (flavonoids and stilbenes) on the self-assembly of Aβ_42, in particular, how this relates to structure.
View Article and Find Full Text PDFOxidized cholesterol has been widely reported to contribute to the pathogenesis of Alzheimer's disease (AD). However, the mechanism by which they affect the disease is not fully understood. Herein, we aimed to investigate the effect of 7-ketocholesterol (7keto) on membrane-mediated aggregation of amyloid beta (Aβ-42), one of the critical pathogenic events in AD.
View Article and Find Full Text PDFEnvironmental and sustainable economical concerns are generating a growing interest in biofuels predominantly produced from biomass. It would be ideal if an energy conversion device could directly extract energy from a sustainable energy resource such as biomass. Unfortunately, up to now, such a direct conversion device produces insufficient power to meet the demand of practical applications.
View Article and Find Full Text PDFCertain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway.
View Article and Find Full Text PDFIn this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a fatal neurodegenerative disease affecting approximately 26 million people world-wide, and the number is increasing as life expectancy increases. Since the only reliable diagnosis for the pathology is histochemical post-mortem examination, there is a rather urgent need for reliable, sensitive and quick detection techniques. Amyloid beta, being one of the established and widely accepted biomarkers of AD is a target biomolecule.
View Article and Find Full Text PDFCholesterol plays an important role in the interaction of Alzheimer's amyloid beta (Aβ) with cell membranes, an important event in Aβ-induced cytotoxicity. However, it is not fully understood how cholesterol influences the association of Aβ with membrane lateral compartments. We have shown that by modulating membrane fluidity, cholesterol decreased peptide localization in solid-ordered domains and increased that in liquid-ordered domains.
View Article and Find Full Text PDFPolyphenols are naturally-occurring compounds, reported to be biologically active, and through their interactions with cell membranes. Although association of the polyphenols with the bilayer has been reported, the detailed mechanism of interaction is not yet well elucidated. We report on spatio-temporal real-time membrane dynamics observed in the presence of polyphenols.
View Article and Find Full Text PDFCell-sized liposomes are a powerful tool for clarifying physicochemical mechanisms that govern molecular interactions. Herein, budding transformation of membrane domains was induced by amyloid beta peptides. The peptides increased the membrane viscosity as demonstrated by the Brownian motion of membrane domains.
View Article and Find Full Text PDFThe interaction of amyloid beta (Aβ) peptide with cell membranes has been shown to be influenced by Aβ conformation, membrane physicochemical properties and lipid composition. However, the effect of cholesterol and its oxidized derivatives, oxysterols, on Aβ-induced neurotoxicity to membranes is not fully understood. We employed here model membranes to investigate the localization of Aβ in membranes and the peptide-induced membrane dynamics in the presence of cholesterol and 7-ketocholesterol (7keto) or 25-hydroxycholesterol (25OH).
View Article and Find Full Text PDFIt is important to understand the physicochemical mechanisms that are responsible for the morphological changes in the cell membrane in the presence of various stimuli such as osmotic pressure. Lipid rafts are believed to play a crucial role in various cellular processes. It is well established that Ctb (Cholera toxin B subunit) recognizes and binds to GM1 (monosialotetrahexosylganglioside) on the cell surface with high specificity and affinity.
View Article and Find Full Text PDFAmyloid beta (Aβ) peptides, produced through endo-proteolytic cleavage of amyloid precursor protein, are thought to be involved in the death of neural cells in Alzheimer's disease (AD). Although the mechanisms are not fully known, it has been suggested that disruption of cellular activity due to Aβ interactions with the cell membrane may be one of the underlying causes. Here in, we have investigated the interaction between Aβ-42 and biomimetic lipid membranes and the resulting perturbations in the lipid vesicles.
View Article and Find Full Text PDFIt is important that we understand the physical, chemical, and biological mechanisms that govern the interaction between nanoparticles (NPs) and heterogeneous cellular surfaces because of the possible cytotoxicity of engineered nanomaterials. In this study, we investigated the lateral localization of nano/microparticles within a biomimetic heterogeneous membrane interface using cell-sized two-phase liposomes. We found that lateral heterogeneity in the membrane mediates the partitioning of nano/microparticles in a size-dependent manner: small particles with a diameter of ≤200 nm were localized in an ordered phase, whereas large particles preferred a fluidic disordered phase.
View Article and Find Full Text PDFMembrane structural organization is an intrinsic property of a cell membrane. Any changes in lipid composition, and/or any stimuli that affect molecular packing induce structural re-organization. It membrane dynamics provide a means by which changes in structure organization can be determined, upon a change in the membrane internal or external environment.
View Article and Find Full Text PDFDAX1 is an orphan nuclear receptor and involved in development of steroidogenic organs, which activates transcription of genes involved in steroidogenesis. In this study, we analyzed the function of the zebrafish dax1 during early development of central nervous systems to appear unidentified aspects of DAX1 and decrease confusions concerned with functions of DAX1 in early development of vertebrates. By whole-mount in situ hybridization of embryo at the 32 h post fertilization (hpf), expression of zebrafish dax1 was detected around the forebrain, midbrain, hindbrain, and the extending tail tip.
View Article and Find Full Text PDFWe used a cell-sized model system, giant liposomes, to investigate the interaction between lipid membranes and surfactants, and the membrane transformation during the solubilization process was captured in real time. We found that there are four distinct dynamics in surfactant-induced membrane deformation: an episodic increase in the membrane area prior to pore-forming associated shrinkage (Dynamics A), fission into many small liposomes (Dynamics B), the formation of multilamellar vesicles and peeling (Dynamics C), and bursting (Dynamics D). Classification of the diversity of membrane dynamics may contribute to a better understanding of the physicochemical mechanism of membrane solubilization induced by various surfactants.
View Article and Find Full Text PDFA unique artificial catalyst that mimics the structure of active sites in real enzymes using functionalized carbon nanotubes is presented. This concept will allow for the potential construction of a library of biomimetic catalysts for enzyme active centers, for which the structure-catalysis relationships are well defined.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2011
The effect of temperature change(s) on the dynamics of giant unilamellar vesicles containing oxidized and non-oxidized cholesterol was investigated and characterized. We have demonstrated that (i) major cholesterol auto-oxidation products, 7β-hydroxycholesterol (7β) and 7-ketocholesterol (7keto), rendered vesicles more responsive to temperature changes; (ii) 7keto imparted greater thermo-induced membrane dynamics than 7β; (iii) 7β and 7keto vesicles synergistically were more thermo-responsive than the individual oxysterols; (iv) the thermo-responsiveness of 7keto-containing vesicles was equivalent to that of 25 hydroxycholesterol (25OH)-containing vesicles; and (v) we have characterized the observed membrane dynamics. The results provide a new plausible mechanism: oxidative-stressed membranes in conjunction with temperature change induce membrane dynamics.
View Article and Find Full Text PDFWe present a rapid gel electrophoretic chip, composed of 2.5% (w/v) acrylamide and 1% (w/v) agarose gel, for serum cholesterol determination using a photo lithography technique. After optimizations, we determined the lipoprotein concentration of standard serum using a conventional enzyme method.
View Article and Find Full Text PDFDesign of molecules for self-assembled mesoscopic structures with specific functions is an important and interesting challenge that spans across disciplines such as nanosciences. A closed lipid membrane is a good example of a self-assembled mesostructure. In this study, we developed controllable membrane formation by making a subtle change at the molecular level.
View Article and Find Full Text PDF