Craniotubular dysplasia, Ikegawa type (OMIM #619727) denotes the autosomal recessive skeletal disease identified in 2021 featuring blindness acquired in childhood. Five young members of four Indian families harbored a homozygous indel within TMEM53 (OMIM *619722), the gene that encodes transmembrane protein 53 (TMEM53). When intact, TMEM53 spans the nuclear envelope of osteoprogenitor cells, dampens BMP-SMAD signaling, and thereby slows bone formation.
View Article and Find Full Text PDFOsteoblast Wnt/-catenin signaling conditions skeletal development and health. Bone formation is stimulated when on the osteoblast surface a Wnt binds to low-density lipoprotein receptor-related protein 5 (LRP5) or 6 (LRP6), in turn coupled to a frizzled receptor. Sclerostin and dickkopf1 inhibit osteogenesis if either links selectively to the first β-propeller of LRP5 or LRP6, thereby disassociating these cognate co-receptors from the frizzled receptor.
View Article and Find Full Text PDFIntroduction: Ultra-rare mendelian osteolytic disorders caused by different length in-frame activating duplications within exon 1 of TNFRSF11A encoding receptor activator of nuclear factor-kappa B (RANK) comprise familial expansile osteolysis (FEO), expansile skeletal hyperphosphatasia (ESH), early-onset familial Paget's disease of bone (PDB2), juvenile Paget's disease 2 (JPD2), and panostotic expansile bone disease (PEBD). FEO typically presents with childhood-onset deafness followed by resorption of permanent dentition, and then appendicular bone pain, fractures, and deformities from progressive focal expansile osteolytic lesions emerging from a background of generalized high bone turnover. An 18-bp duplication in TNFRSF11A has been reported in all kindreds with FEO, whereas a 12-bp duplication was found in the young man with PEBD complicated by a massive jaw tumor.
View Article and Find Full Text PDFInactivating mutations of the gene coding for phosphate-regulating endopeptidase homolog X-linked (PHEX) cause X-linked hypophosphatemia (XLH). A novel variant, c.*231A>G; exon 13-15 duplication, has emerged as a common cause of XLH in North America, emphasizing the importance of delineating its clinical presentation.
View Article and Find Full Text PDFCurr Osteoporos Rep
February 2023
Purpose Of Review: Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare disorder characterized by osteolysis of the carpal and tarsal bones, subtle craniofacial deformities, and nephropathy. The molecular pathways underlying the pathophysiology are not well understood.
Recent Findings: MCTO is caused by heterozygous mutations in MAFB, which encodes the widely expressed transcription factor MafB.
Dysosteosclerosis (DSS), the term coined in 1968 for ultrarare dysplasia of the skeleton featuring platyspondyly with focal appendicular osteosclerosis, has become generic by encompassing the genetic heterogeneity recently reported for this phenotype. We studied four unrelated Turkish patients with DSS to advance understanding of the new nosology. Patient 1 suffered femur fractures beginning at age 1 year.
View Article and Find Full Text PDFInhalant use disorder is a psychiatric condition characterized by repeated deliberate inhalation from among a broad range of household and industrial chemical products with the intention of producing psychoactive effects. In addition to acute intoxication, prolonged inhalation of fluorinated compounds can cause skeletal fluorosis (SF). We report a young woman referred for hypophosphatasemia and carrying a heterozygous ALPL gene variant (c.
View Article and Find Full Text PDFIn 2003, we briefly reported the remarkable osteopathy of a 12-year-old boy who at age two months began fracturing his limbs with subsequent hyperplastic callus formation and expansion and fusion of appendicular bones. By age ten years he had coalesced his lumbosacral spine, pelvis, femurs, and leg and foot bones as a single structure. Computed tomography of expanded bone revealed a thin cortical shell, diminished irregular trabeculae, and cystic areas.
View Article and Find Full Text PDFWnt/β-catenin signaling is important for skeletal development and health. Eleven heterozygous gain-of-function missense mutations within the first β-propeller of low-density lipoprotein receptor-related protein 5 (LRP5) are known to cause the autosomal dominant disorder called high bone mass (HBM). In 2019, different heterozygous LRP6 missense mutations were identified in two American families with the HBM phenotype but including absent lateral maxillary and mandibular incisors.
View Article and Find Full Text PDFCase: A 44-year-old woman presented with easy fatigability, diplopia, dizziness, and a 2-year history of pelvic, hip, and lower extremity aching and pain. Radiograph, magnetic resonance imaging, computed tomography, and histopathologic imaging studies were obtained. Hypersclerosis of the affected bones led to the initiation of a sclerotic bone dysplasia workup and sequencing of the transforming growth factor beta 1 gene located on chromosome 19q13 revealed a heterozygous rare missense variant in exon-4, leading to a final diagnosis of Camurati-Engelmann disease (CED).
View Article and Find Full Text PDFAlkaline phosphatase (ALP) in humans comprises a family of four cell-surface phosphomonoester phosphohydrolase isozymes. Three genes separately encode the "tissue-specific" ALPs whereas the fourth gene encodes ubiquitous homodimeric "tissue-nonspecific" ALP (TNSALP) richly expressed in bone, liver, kidney, and developing teeth. TNSALP monomers have five putative N-linked glycosylation sites where different post-translational modifications account for this isozyme's distinctive physicochemical properties in different organs.
View Article and Find Full Text PDFNitrogen-containing bisphosphonates (N-BPs), such as alendronate, are the most widely prescribed medications for diseases involving bone, with nearly 200 million prescriptions written annually. Recently, widespread use of N-BPs has been challenged due to the risk of rare but traumatic side effects such as atypical femoral fracture (AFF) and osteonecrosis of the jaw (ONJ). N-BPs bind to and inhibit farnesyl diphosphate synthase, resulting in defects in protein prenylation.
View Article and Find Full Text PDFJuvenile Paget's disease (JPD) became in 1974 the commonly used name for ultra-rare heritable occurrences of rapid bone remodeling throughout of the skeleton that present in infancy or early childhood as fractures and deformity hallmarked biochemically by marked elevation of serum alkaline phosphatase (ALP) activity (hyperphosphatasemia). Untreated, JPD can kill during childhood or young adult life. In 2002, we reported that homozygous deletion of the gene called tumor necrosis factor receptor superfamily, member 11B (TNFRSF11B) encoding osteoprotegerin (OPG) explained JPD in Navajos.
View Article and Find Full Text PDFHypophosphatasia (HPP) is the metabolic bone disease caused by loss-of-function mutation(s) of the ALPL gene that encodes the cell-surface tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). In HPP, extracellular accumulation of inorganic pyrophosphate (PPi), a TNSALP natural substrate and inhibitor of biomineralization, often leads to rickets or osteomalacia despite normal or sometimes elevated circulating levels of calcium (Ca) and inorganic phosphate (Pi). We report an infant girl with vitamin D deficiency rickets subsequently healed by cholecalciferol administration alone before receiving TNSALP-replacement therapy for accompanying HPP.
View Article and Find Full Text PDFHypophosphatasia (HPP) is the inborn-error-of-metabolism caused by loss-of-function mutation(s) of the ALPL gene that encodes the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). TNSALP in healthy individuals is on cell surfaces richly in bone, liver, and kidney. Thus, TNSALP natural substrates accumulate extracellularly in HPP, including inorganic pyrophosphate (PPi), a potent inhibitor of hydroxyapatite crystal formation and growth.
View Article and Find Full Text PDFNeoplastic transformation is a rare but serious complication of Paget's disease of bone (PDB), occurring in fewer than 1% of individuals with polyostotic disease. Their prognosis is poor, with less than 50% surviving 5 years. In 2016, the genetic alteration of giant cell tumor (GCT) complicating PDB was identified as a founder germline mutation (P937R) in the ZNF687 gene.
View Article and Find Full Text PDFFour heterozygous in-frame tandem duplications of different lengths in TNFRSF11A, the gene that encodes receptor activator of nuclear factor κB (RANK), constitutively activate RANK and lead to high turnover skeletal disease. Each duplication elongates the signal peptide of RANK. The 18-base pair (bp) duplication at position 84 (84dup18) causes familial expansile osteolysis (FEO), the 15-bp duplication at position 84 (84dup15) causes expansile skeletal hyperphosphatasia (ESH), the 12-bp duplication at position 90 (90dup12) causes panostotic expansile bone disease (PEBD), and the 27-bp duplication causes early-onset Paget's disease of bone (PDB2).
View Article and Find Full Text PDFX-linked hypophosphatemia (XLH), the most prevalent heritable renal phosphate (Pi) wasting disorder, is caused by deactivating mutations of PHEX. Consequently, circulating phosphatonin FGF23 becomes elevated and hypophosphatemia in affected children leads to rickets with skeletal deformity and reduced linear growth while affected adults suffer from osteomalacia and forms of ectopic mineralization. In 2015, we reported uniquely mild XLH in six children and four of their mothers carrying the non-coding PHEX 3'-UTR mutation c.
View Article and Find Full Text PDFThe SIBLINGs are a subfamily of the secreted calcium-binding phosphoproteins and comprise five small integrin-binding ligand N-linked glycoproteins [dentin matrix protein-1 (DMP1), secreted phosphoprotein-1 (SPP1) also called osteopontin (OPN), integrin-binding sialoprotein (IBSP) also called bone sialoprotein (BSP), matrix extracellular phosphoglycoprotein (MEPE), and dentin sialophosphoprotein (DSPP)]. Each SIBLING has at least one "acidic, serine- and aspartic acid-rich motif" (ASARM) and multiple Ser-x-Glu/pSer sequences that when phosphorylated promote binding of the protein to hydroxyapatite for regulation of biomineralization. Mendelian disorders from loss-of-function mutation(s) of the genes that encode the SIBLINGs thus far involve DSPP causing various autosomal dominant dysplasias of dentin but without skeletal disease, and DMP1 causing autosomal recessive hypophosphatemic rickets, type 1 (ARHR1).
View Article and Find Full Text PDFBruck syndrome (BRKS) is the rare disorder that features congenital joint contractures often with pterygia and subsequent fractures, also known as osteogenesis imperfecta (OI) type XI (OMIM # 610968). Its two forms, BRKS1 (OMIM # 259450) and BRKS2 (OMIM # 609220), reflect autosomal recessive (AR) inheritance of FKBP10 and PLOD2 loss-of-function mutations, respectively. A 10-year-old girl was referred with blue sclera, osteopenia, poorly-healing fragility fractures, Wormian skull bones, cleft soft palate, congenital fusion of cervical vertebrae, progressive scoliosis, bell-shaped thorax, restrictive and reactive pulmonary disease, protrusio acetabuli, short stature, and additional dysmorphic features without joint contractures.
View Article and Find Full Text PDFHypophosphatasia (HPP) is the inborn-error-of-metabolism characterized enzymatically by insufficient activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP) and caused by either mono- or bi-allelic loss-of-function mutation(s) of the gene ALPL that encodes this cell surface phosphomonoester phosphohydrolase. In HPP, the natural substrates of TNSALP accumulate extracellularly and include inorganic pyrophosphate (PPi), a potent inhibitor of biomineralization. This PPi excess leads to rickets or osteomalacia in all but the most mild "odonto" form of the disease.
View Article and Find Full Text PDFSclerosteosis (SOST) refers to two extremely rare yet similar skeletal dysplasias featuring a diffusely radiodense skeleton together with congenital syndactyly. SOST1 is transmitted as an autosomal recessive (AR) trait and to date caused by ten homozygous loss-of-function mutations within the gene SOST that encodes the inhibitor of Wnt-mediated bone formation, sclerostin. SOST2 is transmitted as an autosomal dominant (AD) or AR trait and to date caused by one heterozygous or two homozygous loss-of-function mutation(s), respectively, within the gene LRP4 that encodes the sclerostin interaction protein, low-density lipoprotein receptor-related protein 4 (LRP4).
View Article and Find Full Text PDF