Biochem Biophys Res Commun
October 2019
Connexin26 (Cx26) and Cx30 are the predominant connexin subtypes found in the cochlea. They play an essential role in the cochlear functions. However, most studies use mice and the data on the cochlear expression profiles of the two Cxs in higher animals (e.
View Article and Find Full Text PDFBackground: Previous Diffusion Tensor Imaging (DTI) studies have demonstrated the temporal evolution of stroke injury in grey matter and white matter can be characterized by DTI indices. However, it still remains not fully understood how the DTI indices of white matter are altered progressively during the hyperacute (first 6 hours) and acute stage of stroke (≤ 1 week). In the present study, DTI was employed to characterize the temporal evolution of infarction and white matter injury after stroke insult using a macaque model with permanent ischemic occlusion.
View Article and Find Full Text PDFBackground And Purpose: Diffusion-weighted imaging (DWI) and perfusion MRI were used to examine the spatiotemporal evolution of stroke lesions in adult macaques with ischemic occlusion.
Methods: Permanent MCA occlusion was induced with silk sutures through an interventional approach via the femoral artery in adult rhesus monkeys (n = 8, 10-21 years old). The stroke lesions were examined with high-resolution DWI and perfusion MRI, and T2-weighted imaging (T2W) on a clinical 3T scanner at 1-6, 48, and 96 hours post occlusion and validated with H&E staining.
α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2.
View Article and Find Full Text PDFThe destruction of normal synaptic architecture is the main pathogenetic substrate in HIV-associated neurocognitive disorder (HAND), but the sequence of cellular events underlying this outcome is not completely understood. Our recent work in a mouse model of HAND using a single intraparenchymal injection of the HIV-1 regulatory protein trans-activator of transcription revealed increased microglial phagocytosis that was accompanied by an increased release of pro-inflammatory cytokines and elimination of dendritic spines in vivo, thus suggesting that microglia-synapse interactions could be dysregulated in HAND. Here, we further examine the relationships between microglia and synaptic structures in our mouse model, at high spatial resolution using immunocytochemical electron microscopy.
View Article and Find Full Text PDFThe brain circuitry thought to be involved in stress responses includes several nuclei of the extended amygdala. The bed nucleus of the stria terminalis (BNST) is thought to be involved in the generation of sustained, nonspecific anxiety. Previous behavioral and electrophysiological experiments demonstrate that glutamate systems are involved in anxiety-like behaviors in the BNST.
View Article and Find Full Text PDFMemory is central to our ability to perform daily life activities and correctly function in society. Improvements in public health and medical treatment for a variety of diseases have resulted in longer life spans; however, age-related memory impairments have been significant sources of morbidity. Loss in memory function is not only associated with aging population but is also a feature of neurodegenerative diseases such as Alzheimer's disease and other psychiatric and neurological disorders.
View Article and Find Full Text PDFRegulation of BNSTALG neuronal firing activity is tightly regulated by the opposing actions of the fast outward potassium current, IA , mediated by α subunits of the Kv4 family of ion channels, and the transient inward calcium current, IT . Together, these channels play a critical role in regulating the latency to action potential onset, duration, and frequency, as well as dendritic back-propagation and synaptic plasticity. Previously we have shown that Type I-III BNSTALG neurons express mRNA transcripts for each of the Kv4 α subunits.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) is a significant source of disability in the HIV-infected population. Even with stringent adherence to anti-retroviral therapy, >50% of patients living with HIV-1 will develop HAND (Heaton et al., 2010).
View Article and Find Full Text PDFBrain Struct Funct
July 2014
Stress is a growing public health concern and can lead to significant disabilities. The neural response to stressors is thought to be dependent on the extended amygdala. The basolateral amygdala (BLA) is responsible for associations of sensory stimuli with emotional valence and is thought to be involved in stress-induced responses.
View Article and Find Full Text PDFSchizophrenia is a major mental illness that is characterized by psychosis, apathy, social withdrawal and cognitive impairment. These abnormalities in patients results in impaired functioning in work, school, parenting, self-care, independent living, interpersonal relationships, and leisure. Although the search for the biological correlates of schizophrenia has met with limited success, new advances in genetics and pharmacology are promising.
View Article and Find Full Text PDFBlockade of D2 family dopamine receptors (D2Rs) is a fundamental property of antipsychotics, and the degree of striatal D2R occupancy has been related to antipsychotic and motor effects of these drugs. Recent studies suggest the D2R occupancy of antipsychotics may differ in extrastriatal regions compared with the dorsal striatum. We studied this issue in macaque monkeys by using a within-subjects design.
View Article and Find Full Text PDFThe anterolateral cell group of the bed nucleus of the stria terminalis (BNST(ALG)) serves as an important relay station in stress circuitry. Limbic inputs to the BNST(ALG) are primarily glutamatergic and activity-dependent changes in this input have been implicated in abnormal behaviors associated with chronic stress and addiction. Significantly, local infusion of acetylcholine (ACh) receptor agonists into the BNST trigger stress-like cardiovascular responses, however, little is known about the effects of these agents on glutamatergic transmission in the BNST(ALG).
View Article and Find Full Text PDFWorking memory is a process for temporary active maintenance of information and the role of prefrontal cortex in this memory has been known since the pioneering experiments of Fulton in the early 20th century. Sustained firing of prefrontal neurons during the delay period is considered the neural correlate of working memory. Evidence in literature suggests the involvement of areas beyond the frontal lobe and illustrate that working memory involves parallel, distributed neuronal networks.
View Article and Find Full Text PDFNeuroscience
September 2010
The D1 family of dopamine receptors (D1R) play a critical role in modulating reward in the nucleus accumbens (NAc). A better understanding of how D1Rs modulate NAc function must take into account the contributions of the two D1R subtypes, D(1) and D(5). In order to determine how these two subtypes contribute to dopamine's actions in the NAc, we utilized subtype specific antibodies and immunoelectron microscopy to quantitatively determine the localization of D(1) and D(5) in the neuropil of the primate NAc.
View Article and Find Full Text PDFCerebellin1 (Cbln1) is a secreted glycoprotein that was originally isolated from the cerebellum and subsequently found to regulate synaptic development and stability. Cbln1 has a heterogeneous distribution in brain, but the only site in which it has been shown to have central effects is the cerebellar cortex, where loss of Cbln1 causes a reduction in granule cell-Purkinje cell synapses. Neurons of the thalamic parafascicular nucleus (PF), which provide glutamatergic projections to the striatum, also express high levels of Cbln1.
View Article and Find Full Text PDFJ Am Assoc Lab Anim Sci
March 2010
As part of a study of antipsychotic drug treatment in monkeys, we developed a technique to provide chronic, constant-rate, gastric drug infusion in nontethered rhesus macaques. This method allowed us to mimic the osmotic release oral delivery system currently used in humans for continuous enteral drug delivery. Rhesus macaques (n = 5) underwent gastric catheter placement by laparotomy.
View Article and Find Full Text PDFThe actions of dopamine D1 family receptors (D1R) depend upon a signal transduction cascade that modulates the phosphorylation state of important effector proteins, such as glutamate receptors and ion channels. This is accomplished both through activation of protein kinase A (PKA) and the inhibition of protein phosphatase-1 (PP1). Inhibition of PP1 occurs through PKA-mediated phosphorylation of dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP-32) or the related protein inhibitor-1 (I-1), and the availability of DARPP-32 is essential to the functional outcome of D1R activation in the basal ganglia.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2009
Neuronal loss in Parkinson's disease (PD) is more widespread than originally thought. Among the extrastriatal sites in which significant loss of neurons has been reported is the centremedian-parafascicular (CM-PF) complex of the thalamus, which provides one of the three major afferent sources to the striatum. The functional significance of CM-PF loss in PD is unclear.
View Article and Find Full Text PDFBrain Struct Funct
September 2009
Dopamine, acting at the D1 family receptors (D1R) is critical for the functioning of the amygdala, including fear conditioning and cue-induced reinstatement of drug self administration. However, little is known about the different contributions of the two D1R subtypes, D(1) and D(5). We identified D(1)-immunoreactive patches in the primate that appear similar to the intercalated cell masses reported in the rodent; however, both receptors were present across the subdivisions of the primate amygdala including the basolateral amygdala (BLA).
View Article and Find Full Text PDFThe transcription factor myocyte enhancer factor 2 (MEF2) is expressed throughout the central nervous system, where four MEF2 isoforms play important roles in neuronal survival and differentiation and in synapse formation and maintenance. It is therefore somewhat surprising that there is a lack of detailed information on the localization of MEF2 isoforms in the mammalian brain. We have analyzed the regional, cellular, and subcellular expression of MEF2A and MEF2D in the rodent brain.
View Article and Find Full Text PDFInterneurons expressing the calcium-binding protein parvalbumin (PV) are a critical component of the inhibitory circuitry of the basolateral nuclear complex (BLC) of the mammalian amygdala. These neurons form interneuronal networks interconnected by chemical and electrical synapses, and provide a strong perisomatic inhibition of local pyramidal projection neurons. Immunohistochemical studies in rodents have shown that most parvalbumin-positive (PV+) cells are GABAergic interneurons that co-express the calcium-binding protein calbindin (CB), but exhibit no overlap with interneuronal subpopulations containing the calcium-binding protein calretinin (CR) or neuropeptides.
View Article and Find Full Text PDFWorking memory (WM) is a core cognitive process that depends upon activation of D1 family receptors (D1R) and inhibitory interneurons in the prefrontal cortex (PFC). D1R are comprised of the D(1) and D(5) subtypes, and D(5) has a 10-fold higher affinity for dopamine. Parvalbumin (PV) and calretinin (CR) are 2 interneuron populations that are differentially affected by D1R stimulation and have discrete postsynaptic targets, such that PV interneurons provide strong inhibition to pyramidal cells, whereas CR interneurons inhibit other interneurons.
View Article and Find Full Text PDFThe strength of synaptic connections in the brain varies with activity, and this plasticity depends on remodeling of the actin cytoskeleton in dendritic spines. Critical to this are the Rho family GTPases, whose activity is controlled by various modulatory proteins, including the Rho-GEF Lfc. In cultured neurons and nonneuronal cells, Lfc has been shown both to bind to microtubules and to regulate the actin cytoskeleton.
View Article and Find Full Text PDF