Publications by authors named "Mulner-Lorillon O"

Using sea urchin embryos, we demonstrate that the MEK/MAPK/ERK cascade is essential for the proper progression of the cell cycle. Activation of a limited fraction of MAPK/ERK is required between S-phase and M-phase. Neither DNA replication nor CDK1 activation are impacted by the inhibition of this small active MAPK/ERK fraction.

View Article and Find Full Text PDF

Sea urchin eggs exhibit a cap-dependent increase in protein synthesis within minutes after fertilization. This rise in protein synthesis occurs at a constant rate for a great number of proteins translated from the different available mRNAs. Surprisingly, we found that cyclin B, a major cell-cycle regulator, follows a synthesis pattern that is distinct from the global protein population, so we developed a mathematical model to analyze this dissimilarity in biosynthesis kinetic patterns.

View Article and Find Full Text PDF

The cyclin B/CDK1 complex is a key regulator of mitotic entry. Using PP242, a specific ATP-competitive inhibitor of mTOR kinase, we provide evidence that the mTOR signalling pathway controls cyclin B mRNA translation following fertilization in Sphaerechinus granularis and Paracentrotus lividus. We show that PP242 inhibits the degradation of the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-Binding Protein).

View Article and Find Full Text PDF

Estrogens are steroid hormones that play a pivotal role in growth, differentiation and function of reproductive and non-reproductive tissues, mediated through estrogen receptors (ERs). Estrogens are involved in different genomic and non-genomic cell signaling pathways which involve well-defined subcellular ER localizations. Thus, ER activity results from complex interplays between intrinsic binding properties and specific subcellular localization.

View Article and Find Full Text PDF

Fertilization of sea urchin eggs involves an increase in protein synthesis associated with a decrease in the amount of the translation initiation inhibitor 4E-BP. A highly simple reaction model for the regulation of protein synthesis was built and was used to simulate the physiological changes in the total 4E-BP amount observed during time after fertilization. Our study evidenced that two changes occurring at fertilization are necessary to fit with experimental data.

View Article and Find Full Text PDF

NME/NDPK family proteins are involved in the control of intracellular nucleotide homeostasis as well as in both physiological and pathological cellular processes, such as proliferation, differentiation, development, apoptosis, and metastasis dissemination, through mechanisms still largely unknown. One family member, NME1/NDPK-A, is a metastasis suppressor, yet the primary physiological functions of this protein are still missing. The purpose of this study was to identify new NME1/NDPK-A-dependent biological functions and pathways regulated by this gene in the liver.

View Article and Find Full Text PDF

Elongation factor 2 (eEF2) is the main regulator of peptide chain elongation in eukaryotic cells. Using sea urchin eggs and early embryos, two isoforms of eEF2 of respectively 80 and 83 kDa apparent molecular weight have been discovered. Both isoforms were identified by immunological analysis as well as mass spectrometry, and appeared to originate from a unique post-translationally modified protein.

View Article and Find Full Text PDF

Fertilization of sea urchin eggs triggers a rise of protein synthesis mainly dependent on the cap-binding protein eIF4E, which is released from its repressor 4E-BP and associates with eIF4G. Association of eIF4G with eIF4E is a crucial event for the onset of the first mitotic division following fertilization. Artificial activation of unfertilized eggs with the calcium ionophore A23187 results in the activation of protein synthesis comparable to the one triggered by fertilization, while increasing the intracellular pH by ammonia treatment results in partial activation of protein synthesis.

View Article and Find Full Text PDF

Translational control was investigated in sea urchin eggs and embryos in response to the DNA-damaging agent methyl methanesulfonate (MMS). We have shown in this report that exposure of sea urchin embryos to MMS induces drastic effects on protein synthesis activity, and on translation factors level, integrity and post-translational modifications. In response to the treatment of embryos by the DNA-damaging agent MMS, protein synthesis is inhibited independently of the translation inhibitor 4E-BP and in correlation with phosphorylation of the translation factor eIF2alpha subunit.

View Article and Find Full Text PDF

Using sea urchin early embryos as a pertinent model, chromium(III) provoked cell cycle arrest and induced apoptosis. The molecular machinery of translation initiation was investigated. Chromium provoked a time- and dose-dependent increase in the level of 4E-BP protein, the natural regulator of the cap-dependent initiation factor 4E (eIF4E).

View Article and Find Full Text PDF

Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair.

View Article and Find Full Text PDF

mRNA translation is now recognized as a important regulatory step for gene expression in different physiological and pathophysiological processes including cell proliferation and apoptosis. B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of resting lymphocytes and defective apoptosis. The mRNA cap-binding protein eIF4E (eukaryotic Initiation Factor 4E) and its repressor 4E-BP (eIF4E Binding protein) are crucial translational regulators that have been involved in survival and apoptosis processes of cells.

View Article and Find Full Text PDF
Article Synopsis
  • Gene expression regulation is essential for survival, controlling the process from gene to protein and managing energy expenditure during protein synthesis.
  • mRNA can be stored in cells, allowing for rapid control over when and where proteins are made, influencing translation initiation as a key regulatory step.
  • Research on diverse ocean organisms provides insights into gene expression and translational control, aiding understanding of physiological processes and potential new therapeutic targets for human diseases.
View Article and Find Full Text PDF

DNA integrity checkpoint control was studied in the sea urchin early embryo. Treatment of the embryos with genotoxic agents such as methyl methanesulfonate (MMS) or bleomycin induced the activation of a cell cycle checkpoint as evidenced by the occurrence of a delay or an arrest in the division of the embryos and an inhibition of CDK1/cyclin B activating dephosphorylation. The genotoxic treatment was shown to induce DNA damage that depended on the genotoxic concentration and was correlated with the observed cell cycle delay.

View Article and Find Full Text PDF

We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome.

View Article and Find Full Text PDF

A search of the Strongylocentrotus purpuratus genome for genes associated with cell cycle control and DNA metabolism shows that the known repertoire of these genes is conserved in the sea urchin, although with fewer family members represented than in vertebrates, and with some cases of echinoderm-specific gene diversifications. For example, while homologues of the known cyclins are mostly encoded by single genes in S. purpuratus (unlike vertebrates, which have multiple isoforms), there are additional genes encoding novel cyclins of the B and K/L types.

View Article and Find Full Text PDF

Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies.

View Article and Find Full Text PDF

The elongation factor eEF1B involved in protein translation was found to contain two isoforms of the eEF1Bdelta subunit in sea urchin eggs. The eEF1Bdelta2 isoform differs from eEF1Bdelta1 by a specific insert of 26 amino acids. Both isoforms are co-expressed in the cell and likely originate from a unique gene.

View Article and Find Full Text PDF

Translational regulation of gene expression in eukaryotes can rapidly and accurately control cell activity in response to stimuli or when rapidly dividing. There is increasing evidence for a key role of the elongation step in this process. Elongation factor-1 (eEF1), which is responsible for aminoacyl-tRNA transfer on the ribosome, is comprised of two entities: a G-protein named eEF1A and a nucleotide exchange factor, eEF1B.

View Article and Find Full Text PDF

The 4E-binding proteins (4E-BPs) regulate the cap-dependent eukaryotic initiation factor 4E (eIF4E). The level of 4E-BP protein is regulated during early development of sea urchin embryos. Fertilization leads to the rapid disappearance of the protein that reappears later in development.

View Article and Find Full Text PDF

Translation is now recognized as an important process in the regulation of gene expression. During the cell cycle, translation is tightly regulated. Protein synthesis is necessary for entry into and progression through mitosis and conversely, modifications of translational activity are observed during the cell cycle.

View Article and Find Full Text PDF

The eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) inhibit translation initiation by binding eIF4E and preventing recruitment of the translation machinery to mRNA. We have previously shown that fertilization of sea urchin eggs triggers eIF4E-4E-BP complex dissociation and 4E-BP degradation. Here, we show that microinjection of eIF4E-binding motif peptide into unfertilized eggs delays the onset of the first mitosis triggered by fertilization, demonstrating that dissociation of the eIF4E-4E-BP complex is functionally important for the first mitotic division in sea urchin embryos.

View Article and Find Full Text PDF

Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate.

View Article and Find Full Text PDF

A glyphosate containing pesticide impedes at 10 mM glyphosate the G2/M transition as judged from analysis of the first cell cycle of sea urchin development. We show that formulated glyphosate prevented dephosphorylation of Tyr 15 of the cell cycle regulator CDK1/cyclin B in vivo, the end point target of the G2/M cell cycle checkpoint. Formulated glyphosate had no direct effect on the dual specific cdc25 phosphatase activity responsible for Tyr 15 dephosphorylation.

View Article and Find Full Text PDF