Publications by authors named "Mullick J"

Melioidosis rarely presents with spinal involvement, which may lead to neurological complications. It's endemic to Thailand and Australia, but rare in India. Patients with diabetes, immunocompromised states, and chronic renal failure are at high risk of developing melioidosis, which can present with localized or disseminated abscess collection.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a causative agent of a disease continuum, ranging from an acute transient chikungunya fever to chronic incapacitating viral arthralgia. The interaction between anti-CHIKV antibodies and the complement system has recently received attention. However, the contribution of complement activation in CHIKV-induced pathologies has not been fully elucidated.

View Article and Find Full Text PDF

The low pathogenic avian influenza H9N2 virus is a significant zoonotic agent and contributes genes to highly pathogenic avian influenza (HPAI) viruses. H9N2 viruses are prevalent in India with a reported human case. We elucidate the spatio-temporal origins of the H9N2 viruses from India.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worldwide spread of coronavirus disease 19 (COVID-19), and till now, it has caused death to more than 6.2 million people. Although various vaccines and drug candidates are being tested globally with limited to moderate success, a comprehensive therapeutic cure is yet to be achieved.

View Article and Find Full Text PDF

Background & Objectives: Low pathogenic avian influenza (LPAI) viruses cause mild clinical illness in domestic birds. Migratory birds are a known reservoir for all subtypes of avian influenza (AI) viruses. The objective of the study was to characterize AI H4N6 virus isolated from an environmental sample during surveillance in Maharashtra, India.

View Article and Find Full Text PDF

The ongoing coronavirus disease (COVID-19) pandemic is a global public health emergency. Adherence to biosafety practices is mandatory to protect the user as well as the environment, while handling infectious agents. A biological safety cabinet (BSC) is the most important equipment used in diagnostic and research laboratories in order to safeguard the product, the person, and the environment.

View Article and Find Full Text PDF

Viruses require a host for replication and survival and hence are subjected to host immunological pressures. The complement system, a crucial first response of the host immune system, is effective in targeting viruses and virus-infected cells, and boosting the antiviral innate and acquired immune responses. Thus, the system imposes a strong selection pressure on viruses.

View Article and Find Full Text PDF

Introduction: Hemagglutination (HA) and hemagglutination inhibition (HI) assays are conventionally used for the detection and identification of influenza viruses, using red blood cells (RBCs) from mammalian and avian sources. However, there could be limitations for availability of fresh RBCs due to situations such as pandemics, public health emergencies, outbreaks in avian species, lack of animal facilities, animal ethics concerns; or resource-constrained laboratories, and laboratories which do not carry out HA and HI assays routinely. Turkey RBCs (tRBCs) are widely used for HA and HI assays of influenza viruses.

View Article and Find Full Text PDF

New technologies are being developed toward the novel coronavirus SARS-CoV-2 to understand its pathogenesis and transmission, to develop therapeutics and vaccines, and to formulate preventive strategies. Animal models are indispensable to understand these processes and develop and test emerging technologies; however, the mechanism of infection for SARS-CoV-2 requires certain similarities to humans that do not exist in common laboratory rodents. Here, we review important elements of viral infection, transmission, and clinical presentation reflected by various animal models readily available or being developed and studied for SARS-CoV-2 to help bioengineers evaluate appropriate preclinical models for their emerging technologies.

View Article and Find Full Text PDF

Viruses are obligate parasites of cellular hosts and therefore are constantly confronted with the host immune system. Evasion of innate immunity mechanisms by viruses is paramount for the establishment of their infection. The complement system can directly neutralize viruses and also augments adaptive immune responses against them.

View Article and Find Full Text PDF

Background & Objectives: Avian influenza (AI) viruses have been a major cause of public health concern. Wild migratory birds and contaminated environmental sources such as waterbodies soiled with bird droppings play a significant role in the transmission of AI viruses. The objective of the present study was to develop a sensitive and user-friendly method for the concentration and detection of AI viruses from environmental water sources.

View Article and Find Full Text PDF

Antiviral susceptibility screening of avian influenza (AI) H9N2 viruses is crucial considering their role at the animal-human interface and potential to cause human infections. The Matrix 2 (M2) inhibitors (amantadine and rimantadine) have been used for prophylaxis and treatment of influenza A virus infections, however, resistance to these drugs has been widely reported. Information about amantadine susceptibility of H9N2 viruses from India is scanty.

View Article and Find Full Text PDF

Down-regulation or loss of MHC class I expression is a major mechanism used by cancer cells to evade immunosurveillance and increase their oncogenic potential. MHC I mediated antigen presentation is a complex regulatory process, controlled by antigen processing machinery (APM) dictating immune response. Transcriptional regulation of the APM that can modulate gene expression profile and their correlation to MHC I mediated antigen presentation in cancer cells remain enigmatic.

View Article and Find Full Text PDF

Occurrence of avian influenza (AI) with Neuraminidase (NA) mutations which confer reduced neuraminidase inhibitor (NAI) susceptibility has remained a cause of concern. The susceptibility to NAIs of 67 highly pathogenic avian influenza H5N1 viruses isolated during 2006-2012 in India was tested in phenotypic fluorescence-based NA inhibition assay, sequence analysis and in ovo. One isolate showed a novel NA I117T amino acid substitution (N2 numbering) and eight isolates showed previously known NAI-resistance marker mutations (I117V, E119D, N294S, total 9/67).

View Article and Find Full Text PDF

Identification of amino-acid substitutions in the neuraminidase (NA) of low-pathogenic avian influenza (AI) H9N2 viruses is important to study the susceptibility to NA inhibitors (NAI). To identify mutations under NAI selective pressure, the virus was serially passaged with increasing levels of either oseltamivir or zanamivir in ovo, and the growth of the viruses in the presence and absence of NAI's compared. Mutations R292 K in the presence of oseltamivir and E119D in presence of zanamivir were observed within passage one and two respectively.

View Article and Find Full Text PDF

Background: Congenital cytomegalovirus (cCMV) infection is the leading infectious cause of mental retardation, developmental delay and sensorineural deafness. Nonprimary infection plays a major role in transmission of this infection in countries with high maternal seroprevalence. Noninvasive sampling and testing is a useful alternative to traditional methods of laboratory detection of congenital CMV infection.

View Article and Find Full Text PDF

Influenza A virus infection induces type I interferons (IFNs α/β) which activate host antiviral responses through a cascade of IFN signaling events. Herein, we compared highly pathogenic H5N1 and low pathogenic H11N1 avian influenza viruses isolated from India, for their replication kinetics and ability to induce IFN-β and interferon-stimulating genes (ISGs). The H5N1 virus showed a higher replication rate and induced less IFN-β and ISGs compared to the H11N1 virus when grown in the human lung epithelial A549 cells, reflecting the generation of differential innate immune responses during infection by these viruses.

View Article and Find Full Text PDF

Environmental specimens such as faecal droppings are considered important for the detection of avian influenza viruses (AIV). In view of lower rates of AIV isolation from avian faecal droppings, characterization of droppings is imperative to elucidate contributing factors. However, there are no reports on morphological and biochemical characteristics of droppings.

View Article and Find Full Text PDF

The pandemic influenza A(H1N1) 2009 virus caused significant morbidity and mortality worldwide thus necessitating the need to understand the host factors that influence its control. Previously, the complement system has been shown to provide protection during the seasonal influenza virus infection, however, the role of individual complement pathways is not yet clear. Here, we have dissected the role of intact complement as well as of its individual activation pathways during the pandemic influenza virus infection using mouse strains deficient in various complement components.

View Article and Find Full Text PDF

The complement system has evolved to annul pathogens, but its improper regulation is linked with diseases. Efficient regulation of the system is primarily provided by a family of proteins termed regulators of complement activation (RCA). The knowledge of precise structural determinants of RCA proteins critical for imparting the regulatory activities and the molecular events underlying the regulatory processes, nonetheless, is still limited.

View Article and Find Full Text PDF

Introduction: More than 70 outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 have been reported in poultry in the western and north-eastern parts of India. Therefore, in view of the recent HPAI H5N1 outbreaks in poultry, active AI surveillance encompassing wild, resident, migratory birds and poultry was undertaken during 2009-2011 in the State of West Bengal.

Methods: A total of 5722 samples were collected from West Bengal; 3522 samples (2906 fecal droppings + 616 other environmental samples) were from migratory birds and 2200 samples [1604 tracheal, cloacal swabs, environmental samples, tissue samples + 596 blood (serum)] were from domestic ducks and poultry.

View Article and Find Full Text PDF

Poxviruses encode a repertoire of immunomodulatory proteins to thwart the host immune system. One among this array is a homolog of the host complement regulatory proteins that is conserved in various poxviruses including vaccinia (VACV) and variola. The vaccinia virus complement control protein (VCP), which inhibits complement by decaying the classical pathway C3-convertase (decay-accelerating activity), and by supporting inactivation of C3b and C4b by serine protease factor I (cofactor activity), was shown to play a role in viral pathogenesis.

View Article and Find Full Text PDF

The indigenous transmission of the 2009 pandemic H1N1 (pH1N1) virus in India made it as one of the major sub-types in circulation. Genetic characterization indicated that the viruses predominantly clustered in clade 7, the globally most widely circulating pH1N1 clade. It is imperative to continue monitoring the genetic make-up of the pH1N1 viruses to understand their adaptability and evolutionary dynamics in the country.

View Article and Find Full Text PDF

Background: The current study utilized a Bleomycin-induced model of skin fibrosis to investigate the neo-epitope CO3-610 (KNGETGPQGP), a fragment of collagen III released during matrix metalloproteinase-9 (MMP9) degradation of the protein, we have previously described as a novel biomarker for liver fibrosis. The aim was to investigate CO3-610 levels in another well characterised model of fibrosis, to better describe the biomarker in relation to additional fibrotic pathologies.

Methods: Skin fibrosis was induced by daily injections of Bleomycin to a total of 52 female C3 H mice, while control mice (n = 28) were treated with phosphate buffered saline (PBS), for 2, 4, 6 or 8 weeks.

View Article and Find Full Text PDF