DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer.
View Article and Find Full Text PDFDNA polymerase I gene was cloned and sequenced from the thermophilic bacterium Geobacillus caldoxylosilyticus TK4. The gene is 2,634 bp long and encodes a protein of 878 amino acids in length. The enzyme has a molecular mass of 99 kDa and shows sequence homology with DNA polymerase I from Bacillus species (89% identity).
View Article and Find Full Text PDFThe Klenow fragment of Escherichia coli DNA polymerase I houses catalytic centers for both polymerase and 3'-5' exonuclease activities that are separated by about 35 A. Upon the incorporation of a mismatched nucleotide, the primer terminus is transferred from the polymerase site to an exonuclease site designed for excision of the mismatched nucleotides. The structural comparison of the binary complexes of DNA polymerases in the polymerase and the exonuclease modes, together with a molecular modeling of the template strand overhang in Klenow fragment, indicated its binding in the region spanning residues 821-824.
View Article and Find Full Text PDFThe replication of the genome requires the removal of RNA primers from the Okazaki fragments and their replacement by DNA. In prokaryotes, this process is completed by DNA polymerase I by means of strand displacement DNA synthesis and 5 '-nuclease activity. Here, we demonstrate that the strand displacement DNA synthesis is facilitated by the collective participation of Ser(769), Phe(771), and Arg(841) present in the fingers subdomain of DNA polymerase I.
View Article and Find Full Text PDFPrevious structural and biochemical data indicate a participation of the J-helix of Escherichia coli pol I in primer positioning at the polymerase and exonuclease sites. The J-helix contains three polar residues: N675, Q677, and N678. Preliminary characterization of alanine substitutions of these residues showed that only Q677A DNA polymerase has substantially decreased polymerase and increased exonuclease activity.
View Article and Find Full Text PDFTo identify the sites in the Klenow fragment of Escherichia coli DNA polymerase I that interact with the ssDNA overhang of the template strand in the pre-polymerase ternary complex, we carried out UV-mediated photo-cross-linking of the enzyme-DNA-dNTP ternary complex. The template strand contained a nine-nucleotide overhang and was radiolabeled at the 5'-end. Since the enzyme-TP-dNTP ternary complex but not the E-TP binary complex is stable at high ionic strengths, the cross-linking was carried out in the presence of 0.
View Article and Find Full Text PDFThe analysis of the active site region in the crystal structures of template-primer-bound KlenTaq (Klenow fragment equivalent of Thermus aquaticus polymerase I) shows the presence of an approximately 18-A long H-bonding track contributed by the Klenow fragment equivalent of Asn(845), Gln(849), Arg(668), His(881), and Gln(677). Its location is nearly diagonal to the helical axis of the template-primer. Four base pairs in the double stranded region proximal to 3' OH end of the primer terminus appear to interact with individual amino acid components of the track through either the bases or sugar moieties.
View Article and Find Full Text PDFComparison of the three-dimensional structure of the active sites of MuLV and HIV-1 reverse transcriptases shows the presence of a lysine residue (K152) in the substrate-binding region in MuLV RT, while its equivalent position in HIV-1 RT is occupied by a glycine (G112). To investigate the role of K152 in the mechanism of the polymerase reaction catalyzed by MuLV RT, four mutant RTs, namely, K152A, K152R, K152E, and K152G, were generated and biochemically characterized. All muteins exhibited reduced polymerase activity on both RNA and DNA template-primers with K152E being the most defective.
View Article and Find Full Text PDFWe have investigated the roles of four active-site carboxylates in the formation of a prepolymerase ternary complex of Escherichia coli DNA polymerase I (Klenow fragment), containing the template-primer and dNTP. The analysis of nine mutant enzymes with conserved and nonconserved substitutions of Asp(705), Glu(710), Asp(882), and Glu(883) clearly shows that both catalytically essential aspartates, Asp(705) and Asp(882), are required for the formation of a stable ternary complex. Of the two glutamates, only Glu(710) is required for ternary complex formation, while Glu(883) does not participate in this process.
View Article and Find Full Text PDFThe highly conserved GXD sequence present in the Mycobacterium tuberculosis DNA polymerase I corresponds to a hinge region in the finger subdomain connecting M and N helices of Escherichia coli pol I. An examination of the crystal structures of pol I family polymerases reveals that the invariant aspartate of the hinge forms a salt bridge with the conserved arginine of the O-helix and an H-bond with Gln-708. To clarify the role of this region, we generated and characterized conserved and nonconserved mutant derivatives of this aspartate, the preceding glutamate and the Gln in TB pol I.
View Article and Find Full Text PDF