Publications by authors named "Mukul Pradhan"

In this paper, we report the fundamental electrical transport properties measured in BiSe-AgMnOOH nanocomposite disc, which is prepared for the first time by convenient low temperature solution-phase chemistry in conjunction with redox-mediated methodology. The comparative structural and morphological analyses for the nanocomposite with pristine BiSe are comprehensively investigated by different material characterization techniques. The results demonstrate the successful composite fabrication between the BiSe, Ag and γ-MnOOH components.

View Article and Find Full Text PDF

A logically chosen redox reaction of submerged Fe(0) in an aqueous KMnO4 solution has been reported. The template-free reaction conditions produced gram amounts of a hierarchical flowerlike Fe3O4-MnO2 nanocomposite. More precisely, freshly prepared Fe(0) nanoparticles were prepared from air-free hot water under submerged conditions using a door magnet.

View Article and Find Full Text PDF

A vanadium complex, [(C5H5N)2V2O3·H2O], of different morphologies has been obtained via a modified hydrothermal procedure using pyridine and VOSO4 salt as the starting material. The evolved [(C5H5N)2V2O3·H2O] nanobelts are of 50-200 nm in width and of a length up to several millimeters. At higher temperatures (600 °C), the solid [(C5H5N)2V2O3·H2O] nanostructures are converted to vanadium pentoxide (V2O5) and vanadium dioxide (VO2) when heated in air and nitrogen atmosphere, respectively.

View Article and Find Full Text PDF

Selenium generally exhibits preferential habitual 1D growth as a result of redox reactions of selenium compounds. Commercial Se powder melts in silicone oil under refluxing conditions and upon subsequent cooling evolve amorphous Se nanoballs (SNBs). Further ultrapure crystalline 1D Se grows from SNBs due to solvent mediated oriented attachment.

View Article and Find Full Text PDF

Redox transformation reaction between aqueous AgNO3 and Mn(CH3COO)2 at low temperature (∼80 °C) has been adopted for industrial-scale production of uniform Ag-MnOOH composite nanowires for the first time. Varying amounts of incorporated Ag in the composite retain the 1D morphology of the composite. Nanowires upon annealing evolve Ag-MnO2 nanocomposites, once again with the retention of the parental morphology.

View Article and Find Full Text PDF

The befitting capping capabilities of AsO4(3-) provide a stable Cu2O nanocatalyst from a galvanic reaction between a Cu(II) precursor salt and As(0) nanoparticles. This stable Cu2O hydrosol appears to be a suitable catalyst for the one-electron transfer reversible redox reaction between Eosin Y and NaBH4. The progress of the reaction relates to three different kinetic stages.

View Article and Find Full Text PDF

Herein, a simple wet-chemical pathway has been demonstrated for the synthesis of silver nanoparticle conjugated reduced graphene oxide nanosheets where dimethylformamide (DMF) is judiciously employed as an efficient reducing agent. Altogether, DMF reduces both silver nitrate (AgNO3) and graphene oxide (GO) in the reaction mixture. Additionally, the presence of polyvinylpyrolidone (PVP) assists the nanophasic growth and homogeneous distribution of the plasmonic nanoparticle Ag(0).

View Article and Find Full Text PDF

The article reports a simple photoactivation technique for the synthesis of chain like assembly of spherical Au nanocrystals using a nontoxic biochemical, β-cyclodextrin under ~365 nm UV-light irradiation. Under UV irradiation, β-cyclodextrin acts as a reducing as well as capping agent and eventually becomes a stabilizing linker for Au nanoparticles. The UV-visible spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and X-ray photoelectron spectroscopic techniques are employed to systematically characterize the Au nanochains.

View Article and Find Full Text PDF

Phase pure spherical Sn-SnO2 nanoparticles (∼ 50 nm) in gram level have been synthesized from well-defined SnO microplates (∼ 2.0 μm) using focused solar irradiation. The first step of the reaction involves simple stirring of a strong NaOH solution with fine SnCl2·2H2O powder.

View Article and Find Full Text PDF

In the present study, surface-enhanced Raman spectra of a bifunctional Raman reporter, 2-mercaptobenzimidazole, has been found to be responsive exclusively towards Cu(2+) ions while the reporter remains anchored on the Au nanoparticle surface. Thus a specific Cu(2+)-ion-detection protocol emerges. The simplicity, sensitivity, and reproducibility of the method allow routine and quantitative detection of Cu(2+) ions.

View Article and Find Full Text PDF

Unique packaging of Ag(2)O on the surface of polycrystalline AgCl allows fabrication of a new useful, superhydrophobic composite material. This pure inorganic material with surface porosity of submicrometer aperture size fabricates air pockets, which make the composite material superhydrophobic. The new material behaves like lotus leaves, butterfly wings, or water strider's leg in relation to superhydrophobicity.

View Article and Find Full Text PDF

The lability of the [UO2(acac)2H2O] complex has been exploited to decipher solvent composition of a medium. Successive blue shift of the π-π* band (λmax=282 nm) is observed due to alcohol substitution of increasing chain length in place of water. This observation helps to quantify the chain lengths of normal alcohol.

View Article and Find Full Text PDF

Monoclinic CuO crystallite in grams has been obtained from resin bound Cu(II)-1,10-phenanthroline complex, R(-)[Cu(1,10-phen)(2)](2+) that becomes a recyclable catalyst for oxidative phenol coupling (OPC) reaction. Thus an exclusively intuitive blue fluorescing perylene derivative is derived from colorless 2,7-dihydroxynaphthalene (2,7-DHN) in high yield.

View Article and Find Full Text PDF

We have developed a polarization-induced growth process to synthesize gram quantity of gold nanowire (Au NW) on the outer surface of an anion exchange resin matrix. This new, simple, modified hydrothermolysis (MHT) procedure involving resin-bound HAuCl(4) produced micrometer long Au nanowire on resin surface. The charged resin matrix responsibly imposes electrostatic field effect (EFF) for 1D growth of Au NWs in the presence of different amines or derivatives of amines.

View Article and Find Full Text PDF

A surfactantless, trouble-free, and gentle wet chemistry approach has been used to interpret the precisely controlled growth of β-Ni(OH)(2) with the assistance of ammonia and nickel acetate from seedless mild hydrothermal conditions. A thorough investigation of the reaction kinetics and product morphology with varied concentration of NH(3) and different reaction times suggests that a putative mechanism of dissolution, recrystallization, and oriented attachment supports the intelligent self-assembly of nanobuilding blocks. Associated characterizations (FTIR, PXRD, FESEM, EDAX, HRTEM, and Raman) have identified it to be pure β-Ni(OH)(2) without any signature of contamination.

View Article and Find Full Text PDF

Blue solution of copper(II) acetylacetonate complex, [Cu(acac)(2)] in dichloromethane (DCM) and an aqueous alkaline solution of thioacetamide (TAA) constitute a biphasic system. The system in a screw cap test tube under a modified hydrothermal (MHT) reaction condition produces a greenish black solid at the liquid-liquid interface. It has been characterized that the solid mass is an assembly of hexagonal copper sulfide (CuS) nanoplates representing a hierarchical structure.

View Article and Find Full Text PDF

We report here the preparation of a crystalline, pure hexagonal phase of ZnO as hollow 500-800 nm spheroids in the presence of organic bases, such as pyridine, using zinc acetate as the precursor salt. The spheroids exhibit unique 3D hierarchical architectures, like cocoons, and demonstrate improved superhydrophobic (water contact angle, 150 degrees) character due to the inherited air-trapped capillarity within the cocoon structure. The simple synthetic strategy used in this process is modified hydrothermolysis (MHT), which represents a general approach and may contribute to the formation mechanism of the hollow nanostructures with highly improved porosity.

View Article and Find Full Text PDF

A general method has been fabricated to achieve normal as well as inverted core-shell architectures of silver/gold through a layer-by-layer deposition technique on a commercial anion exchange resin. Electrostatic field force of the charged resin beads supports immobilization of anionic metal precursors [MX(n)]-, in turn deposition of silver/gold nanoparticles onto the solid resin matrix and reduction of 2-nitrobenzoic acid to obtain the corresponding amines through effective catalysis. The shell thickness has been tailored made by exploiting a new method of cyclic and repetitive deposition of the desired metal precursors.

View Article and Find Full Text PDF

UV photoactivation of a mixture of benzophenone and ammonium phosphomolybdate (APM) in the solid state splits adsorbed moisture, resulting in selectively hydroxylated benzophenone and leaving an electron trapped in green (reduced) solid APM.

View Article and Find Full Text PDF

The brilliant red [Fe(bpy)(3)](2+) complex upon immobilization on a strongly acidic cation exchanger or in situ formation of the same cationic complex onto a resin matrix and subsequent modified hydrothermolysis (MHT) at approximately 110 degrees C produces unusually stable hierarchical magnetite (Fe(3)O(4)) nanowafers. The slow hydrothermolysis, oxidation, and subsequent dehydration of the complex on the solid-liquid interface produce stable hierarchical nanostructures. The isolation of neat Fe(3)O(4) (uncapped) particles from the resin matrix as hierarchical nanowafers was achieved by magnetically stirring a CH(3)CN suspension of nanocomposites.

View Article and Find Full Text PDF

This critical review reports the fundamental behavior of metal nanoparticles in different organic solvents, i.e., metal organosol.

View Article and Find Full Text PDF

Resin immobilized stable, spherical CuO nanoparticles prepared in the presence of cyclodextrin (CD) act as catalysts for liquid phase alcohol oxidation in air. The catalytic activity of the CuO nanocomposites and its green chemistry approach make it superior to the related resin-bound Cu(0) nanocomposite. The effect of alcohol chain length and electron-donating or -withdrawing groups influence product yield.

View Article and Find Full Text PDF

A straightforward route to gram level synthesis of a pure phase of the Sn-Ag nanoalloy in an eutectic composition (Sn/Ag 96.5:3.5) in silicone oil is reported.

View Article and Find Full Text PDF