Publications by authors named "Mukta Chakraborty"

Background: TransCon CNP (navepegritide) is an investigational prodrug of C-type natriuretic peptide (CNP) designed to allow for continuous CNP exposure with once-weekly dosing. This 52-week phase 2 (ACcomplisH) trial assessed the safety and efficacy of TransCon CNP in children with achondroplasia.

Methods: ACcomplisH is a global, randomised, double-blind, placebo-controlled, dose-escalation trial.

View Article and Find Full Text PDF

Vocal learning is thought to have evolved in 3 orders of birds (songbirds, parrots, and hummingbirds), with each showing similar brain regions that have comparable gene expression specializations relative to the surrounding forebrain motor circuitry. Here, we searched for signatures of these same gene expression specializations in previously uncharacterized brains of 7 assumed vocal non-learning bird lineages across the early branches of the avian family tree. Our findings using a conserved marker for the song system found little evidence of specializations in these taxa, except for woodpeckers.

View Article and Find Full Text PDF

Correlations between differences in animal behavior and brain structures have been used to infer function of those structures. Brain region size has especially been suggested to be important for an animal's behavioral capability, controlled by specific brain regions. The oval nucleus of the mesopallium (MO) is part of the anterior forebrain vocal learning pathway in the parrot brain.

View Article and Find Full Text PDF

Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped.

View Article and Find Full Text PDF
Brain evolution by brain pathway duplication.

Philos Trans R Soc Lond B Biol Sci

December 2015

Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain.

View Article and Find Full Text PDF

Estradiol plays an important role in mediating changes in female sexual behavior across reproductive cycles. In the túngara frog [Physalaemus (=Engystomops) pustulosus], the relationship between gonadal activity and female sexual behavior, as expressed by phonotaxis, is mediated primarily by estradiol. Estradiol receptors are expressed in auditory and motivational brain areas and the hormone could serve as an important modulator of neural responses to conspecific calls.

View Article and Find Full Text PDF

The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds.

View Article and Find Full Text PDF

Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits.

View Article and Find Full Text PDF

Background: During mate choice, individuals must classify potential mates according to species identity and relative attractiveness. In many species, females do so by evaluating variation in the signals produced by males. Male túngara frogs (Physalaemus pustulosus) can produce single note calls (whines) and multi-note calls (whine-chucks).

View Article and Find Full Text PDF

Sex steroid hormones are potent regulators of behavior and they exert their effects through influences on sensory, motor, and motivational systems. To elucidate where androgens and estrogens can act to regulate sex-typical behaviors in the túngara frog (Physalaemus pustulosus), we quantified expression of the androgen receptor (AR), estrogen receptor alpha (ERalpha), and estrogen receptor beta (ERbeta) genes in the brains of male and females. To do so, we cloned túngara-specific sequences for AR, ERalpha, and ERbeta, determined their distribution in the brain, and then quantified their expression in areas that are important in sexual communication.

View Article and Find Full Text PDF

Steroid hormones play an important role in regulating vertebrate sexual behavior. In frogs and toads, injections of exogenous gonadotropins, which stimulate steroid hormone production, are often used to induce reproductive behavior, but steroid hormones alone are not always sufficient. To determine which hormonal conditions promote sexual behavior in female túngara frogs, we assessed the effect of hormone manipulation on the probability of phonotaxis behavior toward conspecific calls in post-reproductive females.

View Article and Find Full Text PDF