Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2010
We propose a general strategy for designing coupling functions in order to achieve a desired amplitude dynamics in coupled nonlinear oscillators. The target dynamics achieved by the proposed control schemes is a fixed-point motion at a desired amplitude level or a periodic motion at a desired frequency. The control schemes are illustrated with Rössler and Hindmarsh-Rose oscillators.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2010
It is well known that resonance can be induced by external noise or diversity. Here we show that resonance can be induced even by a phase disorder in coupled excitable neurons with subthreshold activity. In contrast to the case of identical phase, we find that phase disorder plays an active role in enhancing neuronal activity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2010
Amplitude death is the cessation of oscillations that occurs in coupled nonlinear systems when fixed points are stabilized as a consequence of the interaction. We show here that this phenomenon is very general: it occurs in nonlinearly coupled systems in the absence of parameter mismatch or time delay although time-delayed interactions can enhance the effect. Application is made to synaptically coupled model neurons, nonlinearly coupled Rössler oscillators, as well as to networks of nonlinear oscillators with nonlinear coupling.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2009
Considering the fact that signal transmission time delays between different pairs of synaptically coupled neurons in the brain are different, we study the effects of distributed time delays on phase synchronization of bursting neurons. We consider the case of inhibitory coupled bursting Hindmarsh-Rose neurons and find that distributed time delays in chemical coupling can induce a variety of phase-coherent dynamic behaviors. The critical mean time delay for the emergence of coherent behaviors is inversely proportional to both the coupling strength and the average degree.
View Article and Find Full Text PDFMultielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability.
View Article and Find Full Text PDFExperiments in many fields of science and engineering yield data in the form of time series. The Fourier and wavelet transform-based nonparametric methods are used widely to study the spectral characteristics of these time series data. Here, we extend the framework of nonparametric spectral methods to include the estimation of Granger causality spectra for assessing directional influences.
View Article and Find Full Text PDFHow does the brain integrate information from different senses into a unitary percept? What factors influence such multisensory integration? Using a rhythmic behavioral paradigm and functional magnetic resonance imaging, we identified networks of brain regions for perceptions of physically synchronous and asynchronous auditory-visual events. Measures of behavioral performance revealed the existence of three distinct perceptual states. Perception of asynchrony activated a network of the primary sensory, prefrontal, and inferior parietal cortices, perception of synchrony disengaged the inferior parietal cortex and further recruited the superior colliculus, and when no clear percept was established, only the residual areas comprised of prefrontal and sensory areas were active.
View Article and Find Full Text PDFIn a network of neuronal oscillators with time-delayed coupling, we uncover a phenomenon of enhancement of neural synchrony by time delay: a stable synchronized state exists at low coupling strengths for significant time delays. By formulating a master stability equation for time-delayed networks of Hindmarsh-Rose neurons, we show that there is always an extended region of stable synchronous activity corresponding to low coupling strengths. Such synchrony could be achieved in the undelayed system only by much higher coupling strengths.
View Article and Find Full Text PDFCertain cells in the brain, for example, thalamic neurons during sleep, show spike-burst activity. We study such spike-burst neural activity and the transitions to a synchronized state using a model of coupled bursting neurons. In an electrically coupled network, we show that the increase of coupling strength increases incoherence first and then induces two different transitions to synchronized states, one associated with bursts and the other with spikes.
View Article and Find Full Text PDFUsing functional magnetic resonance imaging (fMRI), we studied the neural correlates of the complexity of rhythmic finger tapping. Our experiments measured the brain activity of 13 subjects performing rhythmic tapping on a response box with multistable rhythms of 1 to 5 different interresponse intervals. From the button press response times, we constructed phase portraits where we identified the number of clusters of periodic points in a rhythm that corresponded to the number of different beats of the rhythm performed.
View Article and Find Full Text PDFAlthough one proposed function of both the striatum and its major dopamine inputs is related to coding rewards and reward-related stimuli, an alternative view suggests a more general role of the striatum in processing salient events, regardless of their reward value. Here we define saliency as an event that both is unexpected and elicits an attentional-behavioral switch (i.e.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2002
Using functional magnetic resonance imaging, we investigate the variation in dynamical complexity of human brain activity for different mental loads. Our experiments measured the activity of ten subjects under three experimental conditions: a rest condition, a periodic task of finger opposition, and a task of finger opposition alternated with mathematical serial calculation. We used the correlation dimension to gauge the spatiotemporal complexity of brain activity.
View Article and Find Full Text PDF