Exogenous hormones play a crucial role in regulating plant growth, development, and stress tolerance. However, the effects of exogenous abscisic acid (ABA) on sugarcane seedlings under water stress remain poorly understood. Here, in this study, a pot experiment was conducted on sugarcane seedlings 4 weeks after transplanting, employing three treatments: control (normal growth), drought (water stress), and drought + ABA (foliar application of 100 μM ABA before water stress).
View Article and Find Full Text PDFBackground: Drought limits crop growth and is an important issue in commercial sugarcane (Saccharum officinarum) production. Drought tolerance in sugarcane induced by endophytic nitrogen-fixing bacteria is a complex biological process that ranges from altered gene expression and cellular metabolism to changes in growth and productivity.
Results: In this study, changes in physiological features and transcriptome related to drought tolerance in sugarcane conferred by the Burkholderia endophytic nitrogen-fixing bacterial strain GXS16 were investigated.
Some sugarcane germplasms can absorb higher amounts of nitrogen atmospheric nitrogen fixation through the bacterial diazotrophs. Most endophytic diazotrophs usually penetrate through the root, colonize inside the plant, and fix the nitrogen. To assess the plant's bacterial association during root colonization, strain GXS16 was tagged with a plasmid-bear green fluorescent protein (GFP) gene.
View Article and Find Full Text PDFSugarcane ( L.) is one of the world's highly significant commercial crops. The amounts of synthetic nitrogen (N) fertilizer required to grow the sugarcane plant at its initial growth stages are higher, which increases the production costs and adverse environmental consequences globally.
View Article and Find Full Text PDFSugarcane is a cash crop that plays an integral part in the sugar industry. The Sustainable Sugarcane Initiative (SSI) has been adopted globally, ensuring enough and aiming for more yield, helping increase disease-free sugarcane cultivation. Single-bud seeds could be the best approach for sugarcane cultivation.
View Article and Find Full Text PDFConsidering the significant role of genetic background in plant-microbe interactions and that most crop rhizospheric microbial research was focused on cultivars, understanding the diversity of root-associated microbiomes in wild progenitors and closely related crossable species may help to breed better cultivars. This study is aimed to fill a critical knowledge gap on rhizosphere and diazotroph bacterial diversity in the wild progenitors of sugarcane, the essential sugar and the second largest bioenergy crop globally. Using a high-throughput sequencing (HTS) platform, we studied the rhizosphere and diazotroph bacterial community of L.
View Article and Find Full Text PDFTo understand the beneficial interaction of sugarcane rhizosphere actinobacteria in promoting plant growth and managing plant diseases, this study investigated the potential role of sugarcane rhizospheric actinobacteria in promoting plant growth and antagonizing plant pathogens. We isolated 58 actinobacteria from the sugarcane rhizosphere, conducted plant growth-promoting (PGP) characteristics research, and tested the pathogenic fungi . Results showed that BTU6 (), the most representative strain, regulates plant defense enzyme activity and significantly enhances sugarcane smut resistance by regulating stress resistance-related enzyme (substances (POD, PAL, PPO, TP) in sugarcane) activity in sugarcane.
View Article and Find Full Text PDFExcessive, long-term application of chemical fertilizers in sugarcane crops disrupts soil microbial flora and causes environmental pollution and yield decline. The role of endophytic bacteria in improving crop production is now well-documented. In this study, we have isolated and identified several endophytic bacterial strains from the root tissues of five sugarcane species.
View Article and Find Full Text PDFPlant endophytic bacteria have many vital roles in plant growth promotion (PGP), such as nitrogen (N) fixation and resistance to biotic and abiotic stresses. In this study, the seedlings of sugarcane varieties B8 (requires a low concentration of nitrogen for growth) and GT11 (requires a high concentration of nitrogen for growth) were inoculated with endophytic diazotroph ED5, which exhibits multiple PGP traits, isolated from sugarcane roots. The results showed that the inoculation with ED5 promoted the growth of plant significantly in both sugarcane varieties.
View Article and Find Full Text PDFSoil salinity causes severe environmental stress that affects agriculture production and food security throughout the world. Salt-tolerant plant-growth-promoting rhizobacteria (PGPR) and nitric oxide (NO), a distinctive signaling molecule, can synergistically assist in the alleviation of abiotic stresses and plant growth promotion, but the mechanism by which this happens is still not well known. In the present study, in a potential salt-tolerant rhizobacteria strain, ASN-1, growth up to 15% NaCl concentration was achieved with sugarcane rhizosphere soil.
View Article and Find Full Text PDFWater stress may become one of the most inevitable factors in years to come regulating crop growth, development, and productivity globally. The application of eco-friendly stress mitigator may sustain physiological fitness of the plants as uptake and accumulation of silicon (Si) found to alleviate stress with plant performance. Our study focused on the mitigative effects of Si using calcium metasilicate (wollastonite powder, CaO·SiO) in sugarcane ( L.
View Article and Find Full Text PDFPlant cell and water relationship regulates morphological, physiological and biochemical characteristics to optimize carboxylation for enhanced biomass yield in sugarcane. Insufficient water irrigation is one of the serious problems to impair potential yield of agriculturally important sugarcane cash crop by loss in plant performance. Our study aims to reveal consequences of foliar spray of silicon (Si) using calcium metasilicate powder (Wollastonite, CaO.
View Article and Find Full Text PDFAs the polyploidy progenitor of modern sugarcane, Saccharum spontaneum is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported on the mechanism of drought tolerance in S. spontaneum.
View Article and Find Full Text PDFSugarcane smut is a significant fungal disease that causes a major loss in sugar yield and quality. In this study, we isolated an endophytic strain B18 from a sugarcane root, which showed plant growth-promotion, hydrolytic enzyme production, antifungal activity against sugarcane pathogens (), and the presence of , , and antibiotic genes (, and ) under conditions. BIOLOG phenotypic profiling of B18 established its ability to use various carbon and nitrogen sources and tolerate a range of pH and osmotic and temperature stresses.
View Article and Find Full Text PDFSufficient water and fertilizer inputs in agriculture play a major role in crop growth, production, and quality. In this study, the response of sugarcane to limited water irrigation and foliar application of potassium salt of active phosphorus (PSAP) for photosynthetic responses were examined, and PSAP's role in limited water irrigation management was assessed. Sugarcane plants were subjected to limited irrigation (95-90 and 45-40% FC) after three months of germination, followed by a foliar spray (0, 2, 4, 6, and 10 M) of PSAP.
View Article and Find Full Text PDFSugarcane is a major crop in tropical and subtropical regions of the world. In China, the application of large amounts of nitrogen (N) fertilizer to boost sugarcane yield is commonplace, but it causes substantial environmental damages, particularly soil, and water pollution. Certain rhizosphere microbes are known to be beneficial for sugarcane production, but much of the sugarcane rhizosphere microflora remains unknown.
View Article and Find Full Text PDFIn the dynamic era of climate change, agricultural farming systems are facing various unprecedented problems worldwide. Drought stress is one of the serious abiotic stresses that hinder the growth potential and crop productivity. Silicon (Si) can improve crop yield by enhancing the efficiency of inputs and reducing relevant losses.
View Article and Find Full Text PDFSeveral factors influenced the sugarcane production, and among them, higher use of nitrogen and depletion of soil nutrient constitutes a significant concern in China. Sugarcane-legume intercropping may help to regulate the microbial structure and functions. In the present study, sugarcane rhizosphere soils of three cropping systems: Sugarcane only (S-only), sugarcane with peanut (S + P), and sugarcane + soybean (S + S) were sampled in tillering, elongation, and maturation stages from two different experimental fields.
View Article and Find Full Text PDFAbiotic stresses are the major constraints in agricultural crop production across the globe. The use of some plant-microbe interactions are established as an environment friendly way of enhancing crop productivity, and improving plant development and tolerance to abiotic stresses by direct or indirect mechanisms. Silicon (Si) can also stimulate plant growth and mitigate environmental stresses, and it is not detrimental to plants and is devoid of environmental contamination even if applied in excess quantity.
View Article and Find Full Text PDFSilicon (Si) is not categorized as a biologically essential element for plants, yet a great number of scientific reports have shown its significant effects in various crop plants and environmental variables. Plant Si plays biologically active role in plant life cycle, and the significant impact depends on its bioaccumulation in plant tissues or parts. In particular, it has been investigated for its involvement in limited irrigation management.
View Article and Find Full Text PDFPokkah boeng disease (PBD) is a foliar disease causing severe losses in sugarcane crop production. Research into resistance mechanisms against the causal agent, Fusarium verticillioides, is particularly important for farmers and researchers. This work based on the comprehensive analysis of metabolic, proteomic, and bioinformatics data on nitrogen (N) metabolism, which revealed that this biosynthetic reactions was closely related to resistance mechanisms in the sugarcane- F.
View Article and Find Full Text PDFBackground: Nitrogen is an essential element for sugarcane growth and development and is generally applied in the form of urea often much more than at recommended rates, causing serious soil degradation, particularly soil acidification, as well as groundwater and air pollution. In spite of the importance of nitrogen for plant growth, fewer reports are available to understand the application and biological role of N fixing bacteria to improve N nutrition in the sugarcane plant.
Results: In this study, a total of 350 different bacterial strains were isolated from rhizospheric soil samples of the sugarcane plants.
The diazotrophic Burkholderia anthina MYSP113 is a vital plant growth-promoting bacteria and sugarcane root association. The present study based on a detailed analysis of sugarcane root transcriptome by using the HiSeq-Illumina platform in response to the strain MYSP113. The bacterium was initially isolated from the rhizosphere of sugarcane.
View Article and Find Full Text PDFSmut disease is caused by , an important sugarcane fungal pathogen causing an extensive loss in yield and sugar quality. The available literature suggests that there are two types of smut resistance mechanisms: external resistance by physical or chemical barriers and intrinsic internal resistance mechanisms operating at host⁻pathogen interaction at cellular and molecular levels. The nature of smut resistance mechanisms, however, remains largely unknown.
View Article and Find Full Text PDF