Publications by authors named "Mukesh Gangar"

Cyclic GMP-AMP synthase (cGAS) is an endogenous DNA sensor that synthesizes cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) from ATP and GTP. 2'3'-cGAMP activates the stimulator of interferon genes (STING) pathway, resulting in the production of interferons and pro-inflammatory cytokines. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is the phosphodiesterase that negatively regulates the STING pathway by hydrolyzing 2'3'-cGAMP.

View Article and Find Full Text PDF

Ecto-nucleotide pyrophosphatase/phosphodiesterases 1 (ENPP1 or NPP1), is an attractive therapeutic target for various diseases, primarily cancer and mineralization disorders. The ecto-enzyme is located on the cell surface and has been implicated in the control of extracellular levels of nucleotide, nucleoside and (di) phosphate. Recently, it has emerged as a critical phosphodiesterase that hydrolyzes cyclic 2'3'- cGAMP, the endogenous ligand for STING (STimulator of INterferon Genes).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the interaction of boron-containing compounds with penicillin-binding protein (PBP) β-lactam targets, which have not been thoroughly researched before.
  • High-throughput X-ray crystallography revealed that different boron compounds can form varying types of covalent links with the PBP3 enzyme, which is significant for their inhibitory activity.
  • Findings suggest that while some modifications of benzoxaboroles inhibit PBP3 moderately, they do not exhibit antibacterial activity, highlighting the potential for developing new boron-based antibiotics that could overcome current resistance issues posed by β-lactamases.
View Article and Find Full Text PDF

Cathepsin D, an aspartyl protease, is an attractive therapeutic target for various diseases, primarily cancer and osteoarthritis. However, despite several small molecule cathepsin D inhibitors being developed, that are highly potent, most of them show poor microsomal stability, which in turn limits their clinical translation. Herein, we describe the design, optimization and evaluation of a series of novel non-peptidic acylguanidine based small molecule inhibitors of cathepsin D.

View Article and Find Full Text PDF

An efficient, eco-friendly, base free, one-pot, sequential protocol was developed for epoxide azidolysis and copper-catalyzed azide-alkyne cycloaddition using water as the solvent for the synthesis of 3-hydroxy-1-alkyl-3-[(4-aryl/alkyl-1H-1,2,3-triazol-1-yl)methyl]indolin-2-ones. The optimized reaction conditions have been generalized in the case of aromatic as well as aliphatic alkyne partners to afford good yields and high regioselectivity.

View Article and Find Full Text PDF