Publications by authors named "Mujeen Sung"

Summary: Recent proprietary large language models (LLMs), such as GPT-4, have achieved a milestone in tackling diverse challenges in the biomedical domain, ranging from multiple-choice questions to long-form generations. To address challenges that still cannot be handled with the encoded knowledge of LLMs, various retrieval-augmented generation (RAG) methods have been developed by searching documents from the knowledge corpus and appending them unconditionally or selectively to the input of LLMs for generation. However, when applying existing methods to different domain-specific problems, poor generalization becomes apparent, leading to fetching incorrect documents or making inaccurate judgments.

View Article and Find Full Text PDF

The BioCreative National Library of Medicine (NLM)-Chem track calls for a community effort to fine-tune automated recognition of chemical names in the biomedical literature. Chemicals are one of the most searched biomedical entities in PubMed, and-as highlighted during the coronavirus disease 2019 pandemic-their identification may significantly advance research in multiple biomedical subfields. While previous community challenges focused on identifying chemical names mentioned in titles and abstracts, the full text contains valuable additional detail.

View Article and Find Full Text PDF

Chemical identification involves finding chemical entities in text (i.e. named entity recognition) and assigning unique identifiers to the entities (i.

View Article and Find Full Text PDF

Unlabelled: In biomedical natural language processing, named entity recognition (NER) and named entity normalization (NEN) are key tasks that enable the automatic extraction of biomedical entities (e.g. diseases and drugs) from the ever-growing biomedical literature.

View Article and Find Full Text PDF

Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease.

View Article and Find Full Text PDF