Publications by authors named "Muhua Zheng"

The dynamics of epidemic spreading is often reduced to the single control parameter R (reproduction-rate), whose value, above or below unity, determines the state of the contagion. If, however, the pathogen evolves as it spreads, R may change over time, potentially leading to a mutation-driven spread, in which an initially sub-pandemic pathogen undergoes a breakthrough mutation. To predict the boundaries of this pandemic phase, we introduce here a modeling framework to couple the inter-host network spreading patterns with the intra-host evolutionary dynamics.

View Article and Find Full Text PDF

In modern society, new communication channels and social platforms remarkably change the way of people receiving and sharing information, but the influences of these channels on information spreading dynamics have not been fully explored, especially in the aspects of outbreak patterns. To this end, based on a susceptible-accepted-recovered model, we examined the outbreak patterns of information spreading in a two-layered network with two coexisting channels: the intra-links within a layer and the inter-links across layers. Depending on the inter-layer coupling strength, i.

View Article and Find Full Text PDF

Real networks often grow through the sequential addition of new nodes that connect to older ones in the graph. However, many real systems evolve through the branching of fundamental units, whether those be scientific fields, countries, or species. Here, we provide empirical evidence for self-similar growth of network structure in the evolution of real systems-the journal-citation network and the world trade web-and present the geometric branching growth model, which predicts this evolution and explains the symmetries observed.

View Article and Find Full Text PDF

Temporality is an essential characteristic of many real-world networks and dramatically affects the spreading dynamics on networks. In this paper, we propose an information spreading model on temporal networks with heterogeneous populations. Individuals are divided into activists and bigots to describe the willingness to accept the information.

View Article and Find Full Text PDF

Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions.

View Article and Find Full Text PDF

Human cerebral cortex displays various dynamics patterns under different states, however the mechanism how such diverse patterns can be supported by the underlying brain network is still not well understood. Human brain has a unique network structure with different regions of interesting to perform cognitive tasks. Using coupled neural mass oscillators on human cortical network and paying attention to both global and local regions, we observe a new feature of chimera states with multiple spatial scales and a positive correlation between the synchronization preference of local region and the degree of symmetry of the connectivity of the region in the network.

View Article and Find Full Text PDF

A great deal of significant progress has been seen in the study of information spreading on populations of networked individuals. A common point in many of the past studies is that there is only one transition in the phase diagram of the final accepted size versus the transmission probability. However, whether other factors alter this phenomenology is still under debate, especially for the case of information spreading through many channels and platforms.

View Article and Find Full Text PDF

Efficient vaccination strategy is crucial for controlling recurrent epidemic spreading on networks. In this paper, based on the analysis of real epidemic data and simulations, it's found that the risk indicator of recurrent epidemic outbreaks could be determined by the ratio of the epidemic infection rate of the year to the average infected density of the former year. According to the risk indicator, the dynamic vaccination probability of each year can be designed to suppress the epidemic outbreaks.

View Article and Find Full Text PDF

It is recently revealed from amounts of real data of recurrent epidemics that there is a phenomenon of hysteresis loop in the state space. To understand it, an indirect investigation from the parameter space has been given to qualitatively explain its mechanism but a more convincing study to quantitatively explain the phenomenon directly from the state space is still missing. We here study this phenomenon directly from the state space and find that there is a positive correlation between the size of outbreak and the size of hysteresis loop, implying that the hysteresis is a nature feature of epidemic outbreak in real case.

View Article and Find Full Text PDF

Networks in nature rarely function in isolation but instead interact with one another with a form of a network of networks (NoN). A network of networks with interdependency between distinct networks contains instability of abrupt collapse related to the global rule of activation. As a remedy of the collapse instability, here we investigate a model of correlated NoN.

View Article and Find Full Text PDF

Information spreading has been studied for decades, but its underlying mechanism is still under debate, especially for those ones spreading extremely fast through the Internet. By focusing on the information spreading data of six typical events on Sina Weibo, we surprisingly find that the spreading of modern information shows some new features, i.e.

View Article and Find Full Text PDF

The study of epidemic spreading on populations of networked individuals has seen recently a great deal of significant progresses. A common point in many of past studies is, however, that there is only one peak of infected density in each single epidemic spreading episode. At variance, real data from different cities over the world suggest that, besides a major single peak trait of infected density, a finite probability exists for a pattern made of two (or multiple) peaks.

View Article and Find Full Text PDF

Epidemic spreading has been studied for a long time and most of them are focused on the growing aspect of a single epidemic outbreak. Recently, we extended the study to the case of recurrent epidemics (Sci. Rep.

View Article and Find Full Text PDF

Most of the studies on epidemics so far have focused on the growing phase, such as how an epidemic spreads and what are the conditions for an epidemic to break out in a variety of cases. However, we discover from real data that on a large scale, the spread of an epidemic is in fact a recurrent event with distinctive growing and recovering phases, i.e.

View Article and Find Full Text PDF

The study of recurrent epidemic outbreaks has been attracting great attention for decades, but its underlying mechanism is still under debate. Based on a large number of real data from different cities, we find that besides the seasonal periodic outbreaks of influenza, there are also non-periodic outbreaks, i.e.

View Article and Find Full Text PDF

There are many evidences to show that different pathogens may interplay each other and cause a variety of mutual influences of epidemics in multiplex networks, but it is still lack of a framework to unify all the different dynamic outcomes of the interactions between the pathogens. We here study this problem and first time present the concept of state-dependent infectious rate, in contrast to the constant infectious rate in previous studies. We consider a model consisting of a two-layered network with one pathogen on the first layer and the other on the second layer, and show that all the different influences between the two pathogens can be given by the different range of parameters in the infectious rates, which includes the cases of mutual enhancement, mutual suppression, and even initial cooperation (suppression) induced final suppression (acceleration).

View Article and Find Full Text PDF

Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvne3kev7me8q6hghfe335dqa2vispkes): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once